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ABSTRACT. Counterfactual predictions are challenging when the policy variable goes beyond its

pre-policy support. However, in many cases, information about the policy of interest is avail-

able from different (“source”) regions where a similar policy has already been implemented. In

this paper, we propose a novel method of using such data from source regions to predict a new

policy in a target region. Instead of relying on extrapolation of a structural relationship using

a parametric specification, we formulate a transferability condition and construct a synthetic

outcome-policy relationship such that it is as close as possible to meeting the condition. The

synthetic relationship weighs both the similarity in distributions of observables and in structural

relationships. We develop a general procedure to construct asymptotic confidence intervals for

counterfactual predictions and prove its asymptotic validity. We then apply our proposal to pre-

dict average teenage employment in Texas following a counterfactual increase in the minimum

wage.
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1. Introduction

Policymakers’ questions are often centered around the prediction of a new policy’s outcome,

such as predicting the effect of a new job training program, the welfare implication of a pro-

posed merger of firms, or the employment effect of a minimum wage increase.1 Such questions

are hard to answer because the new policy’s outcome is not observed. For example, when a

state in the U.S. considers increasing its minimum wage to a level never seen before within

that state, this will imply that the policy is beyond its historical variations. In this situation, the

researcher may consider using a parametric specification of the outcome-policy relationship

and extrapolate it to a post-policy setting. However, when the new policy goes beyond the

support of its historical variations, the counterfactual prediction may fail to be nonparamet-

rically identified and the prediction inevitably relies on the particular parametrization that is

chosen.

Alternatively, the researcher may use data from another region that has experienced a similar

policy in the past. Transferring empirical features from one source to another has long been

used in economics. In macroeconomics, it is common to calibrate a structural model by using

estimates from micro-studies (see Gregory and Smith (1993) for a review). In a different

context, the decomposition method in labor economics can also be viewed as following a similar

idea: the researcher “transfers” information from a population in one period (before the policy)

to the same population in another period (after the policy) (see Fortin, Lemieux, and Firpo

(2011) for a review of this vast literature).2 The program evaluation literature also explores

various methods of transferring causal inference results from one experiment setting to another

experiment or non-experiment setting (see Hotz, Imbens, and Mortimer (2005), Hartman,

Grieve, Ramsahai, and Sekhon (2015), Athey, Chetty, and Imbens (2020), Gechter and Meager

(2022), to name but a few). However, to the best of our knowledge, much less attention has

been paid to the transfer problem when predicting counterfactual policies using structural

equation models.

In this paper, we consider the problem of generating counterfactual predictions from a new

policy, using data from other regions that have experienced a similar policy in the past. In

order to transfer empirical features across regions in structural models, the outcome-policy

relationship needs to be “transferable” from one region to another. For example, we may want

to predict the average teenage employment after a minimum wage increase in Texas in the U.S.,

1See Heckman and Vytlacil (2005), Heckman (2010), and Wolpin (2013) for discussions on the importance and
challenges of ex ante policy evaluations. See Hotz, Imbens, and Mortimer (2005) for related issues in a program
evaluation setting.
2Since the population may have changed between the two periods for reasons other than the policy, we can view
the decomposition method as a special form of a transfer between different populations.
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and consider using data from California, assuming that its structural relationship between the

teenage employment outcome and the minimum wage (after controlling for some observed

characteristics) is identical to that in Texas.3 However, the transferability between two regions

can be strong in practice, especially when the market environments in the two regions exhibit

salient differences.

As we show in this paper, the transferability issue can be alleviated when we have multiple

“source” regions in which similar policies have been implemented in the past. In the minimum

wage example with Texas as the target region, there may be several other states such as Califor-

nia, Oregon, and Connecticut which experienced similar minimum wage increases. However,

aggregating data from these source regions is not immediately obvious. Ideally, it would be

desirable to choose a source region that is most “similar” to the target region, but it is not clear

which dimensions of the characteristics between the two regions would be most relevant for a

given policy prediction problem.

To solve this issue, we develop a method of aggregating information from multiple source

regions to generate counterfactual predictions in the target region by constructing a synthetic

structural relationship from multiple source regions. First, as noted by Todd and Wolpin

(2008), structural equation models often involve the policy variable in an index (called the

policy component here) which exhibits variations at the individual level. We can classify each

person in the target population into the matched group and unmatched group depending on

whether the person’s post-policy value of the policy component can be matched with another

person’s pre-policy value of the policy component in the same population. As proposed by Todd

and Wolpin (2008), we can use the pre-policy data from the target population to nonparamet-

rically identify the counterfactual predictions for the matched group even under new policies

never implemented before (see Wolpin (2013) for an overview of this approach).

To generate counterfactual predictions for the unmatched group, we introduce what we call

the synthetic transferability condition which requires that there exist a weight vector such that

the weighted average of the outcome-policy relationships in the source regions coincides with

that of the target region. This condition is weaker than the transferability condition with a

single source region, described above, as it does not require the source regions to have the

same structural relationship as the target region. Then, under a non-redundancy condition

for the source regions, we can identify this weight as a minimizer of an L2 distance between

3As we explain later, the transferability condition is closely related to conditional external validity or the external
unconfoundedness condition in the literature of causal inference and external validity (see Hotz, Imbens, and
Mortimer (2005), Hartman, Grieve, Ramsahai, and Sekhon (2015), and Athey, Chetty, and Imbens (2020)). The
synthetic transferability condition has a testable implication in a spirit similar to checking the pre-treatment fit
in synthetic control methods. Our proposal entails a formal test of this implication with uniform asymptotic size
control.
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the outcome-policy relationship in the target region and the weighted average of the outcome-

policy relationships in the source regions, where the L2 distance is restricted to the matched

group in the target region. Thus, we find a weighted average of the outcome-policy relation-

ships in the source regions that is most similar to that in the target region on the matched

group. This weighted average can be viewed as a synthetic structural relationship that can be

used to generate counterfactual predictions. As our proposal essentially replaces the structural

relationship involved in the decomposition method with a synthetic one, we call this method

a synthetic decomposition method.

Our method is quite general and can be applied to a wide range of counterfactual prediction

settings. In particular, we consider a generic nonparametric form of an outcome-policy rela-

tionship that is nonseparable in the (potentially multi-dimensional) unobserved heterogeneity.

This flexibility allows the researcher to derive a nonparametric outcome-policy relationship

from a structural model that specifies peoples’ incentives and choices differently across the

populations. Furthermore, the type of a policy can vary, including policies that transform a

certain individual-level exogenous variable (e.g., demographic-dependent tax subsidies) or an

aggregate-level exogenous variable (e.g., minimum wages). The policy can be one that changes

a structural parameter or a coefficient of a certain variable, or a change in the distribution of

an exogenous observed variable.

We then develop inference on the counterfactual prediction from the synthetic decomposi-

tion method. In this paper, we pursue a general approach that does not require the researcher’s

knowledge of the details of the asymptotic properties of estimators for each source region, be-

cause such properties may vary depending on the particular model specified for each region

(e.g., the specification of the structural relationship between outcomes, a policy, and observed

or unobserved characteristics). More specifically, we develop an inference method for the pol-

icy predictions inspired by Rosen (2008), Moon and Schorfheide (2009), Shi and Shum (2015),

Bugni, Canay, and Shi (2017), and Cox and Shi (2022). The non-standard aspect of inference

in our context is that the estimated weight is chosen from a simplex, and hence, the limiting

distribution of the estimated weight depends on how close the population weight is to a vertex

or an edge of the simplex. While the situation is analogous to a setting with the parameter

on the boundary studied by Geyer (1994) and Andrews (1999), their approach of quadratic

approximation does not apply here.4 By adapting the proposal of Mohamad, van Zwet, Cator,

4Asymptotic or bootstrap inference for constrained estimators has received a considerable attention in the econo-
metrics literature. More recent examples include Kaido and Santos (2014), Kitamura and Stoye (2018), Fang and
Seo (2021), Hsieh, Shi, and Shum (2022) and Li (2022) to name but a few. See those papers for more references
in this literature.
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and Goeman (2020) and Cox and Shi (2022) to our setting, we develop an asymptotic infer-

ence method that is valid uniformly over the behavior of the population weight. Monte Carlo

simulations suggest that our procedure works well in finite samples.

We illustrate our procedure with an empirical application studying the effects of a counter-

factual increase in minimum wages in Texas to US$9. (The prevailing minimum wage is the

federal level of US$7.25, set in 2009.) Such increases are subject to extensive policy and aca-

demic interest, as shown by it being a central policy proposal in the 2022 Texas gubernatorial

elections.5 However, the extensive minimum wage literature in labor economics predominantly

focuses on ex post analyses of minimum wage increases (Neumark (2019)). We implement our

proposed method using Current Population Survey (CPS) data and estimate that an increase in

minimum wages would decrease average (teenage) employment by 9.5-11 percentage points

on a baseline of approximately 29% if minimum wages in Texas were US$9. In doing so, our

synthetic comparison for Texas (i) accounts for the heterogeneous skill distributions and de-

mand conditions across states (Flinn (2011)), (ii) does not require the researcher to choose the

comparison unit (e.g., whether to focus on geographically close or distant states - see Dube,

Lester, and Reich (2010) and Neumark (2019) for a discussion), (iii) accounts for the differ-

ence in causal relationships between minimum wages and employments across states (Flinn

(2002)), (iv) does not rely on parametric extrapolation, which is a concern in this literature -

see Flinn (2006); Gorry and Jackson (2017); Neumark (2019), for example.

Related Literature

The importance of ex ante policy evaluation in economics has been emphasized in the litera-

ture. See, for example, Heckman and Vytlacil (2005), Wolpin (2007) and Wolpin (2013). See

also the review by Heckman (2010) and the references therein. The evaluation usually builds

on an invariance condition that requires certain structural relationships to remain unchanged

after the policy. While most literature on program evaluations focuses on measuring the im-

pact of a policy, the invariance of structural relationships that underlies the measured impact

is crucial for understanding the reasons for the effect of the policy and predicting the effect of

a new policy.

The literature of counterfactual predictions using structural models has often been motivated

by the ex ante policy evaluation settings in practice. Stock (1989) studied the problem of coun-

terfactual predictions using a structural equation model, when a policy changes the distribution

of an exogenous variable. A recent stream of literature studies the nonparametric identification

of counterfactual predictions in structural models (see Aguirregabiria (2005), Jun and Pinkse

(2020), and Gu, Russell, and Stringham (2022), to name but a few.) A consistent theme in this

5See tinyurl.com/2cmv7fhz for its presence and analysis within one of the candidate’s policy platforms.

tinyurl.com/2cmv7fhz
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literature is that certain objects of counterfactual prediction are nonparametrically identified

even when the structural model is not fully identified. Examples include Aguirregabiria and

Suzuki (2014), Norets and Tang (2014), Arcidiacono and Miller (2020), Kalouptsidi, Scott,

and Souza-Rodrigues (2020), Kalouptsidi, Kitamura, Lima, and Souza-Rodrigues (2020), and

Canen and Song (2023). However, this literature usually considers identification using data

from the target population only.

Our proposal is closely related to the decomposition method in labor economics. After the

seminal papers of Oaxaca (1973) and Blinder (1973), the decomposition method has been

extended and widely used in labor economics.6 See Juhn, Murphy, and Pierce (1993) and Di-

Nardo, Fortin, and Lemieux (1996). The causal interpretation of the decomposition method

was studied by Kline (2011). See also Fortin, Lemieux, and Firpo (2011) for an extensive

review of this literature. There is a growing literature of nonparametric counterfactual predic-

tion inspired by the decomposition method. See Rothe (2010), Chernozhukov, Fernández-Val,

and Melly (2013), and Hsu, Lai, and Lieli (2022). The transfer of results from a source pop-

ulation to a target population requires various forms of invariance conditions. (See Heckman

and Vytlacil (2007) for a detailed discussion on these conditions.) See also Hsu, Lai, and Lieli

(2022) for an invariance condition invoked in the problem of counterfactual predictions from

one study context to another. In the literature of statistics, a similar form of an invariance

condition is proposed by Bühlmann (2020).

A growing attention has been paid to the issue of external validity in field experiments, such

as when the results obtained from experiments are not replicated in their scaled-up implemen-

tation. (See Allcott (2015), Bold, Kimenyi, Mwabu, Sandefur, et al. (2018), and Wang and

Yang (2021) and references therein. See also Duflo (2004) and Muralidharan and Niehaus

(2017) for the review of these issues and the literature.) One of the earliest approaches to

detect or address the issue of external validity in program evaluations is found in Hotz, Im-

bens, and Mortimer (2005). They consider the problem of using past experiment results to

predict its outcome for a different population. They introduce what they call the assumption

of unconfounded location and show the external validity of the past experiments under this

assumption. Variants of this assumption have been used in the study of external validity in the

literature. Examples include Hartman, Grieve, Ramsahai, and Sekhon (2015), Athey, Chetty,

and Imbens (2020), and Gui (2022). Another strand of related literature considers combining

experimental and observational data (see, e.g., Athey, Chetty, and Imbens (2020) and Gechter

and Meager (2022)), or performs meta analysis by aggregating experiment results across stud-

ies using a Bayesian hierarchical model (BHM) or pursuing minimax regret optimality (see,

6Vitor Possebom kindly let us know that there was an early appearance of a similar idea in Kitagawa (1955).



7

e.g., Vivalt (2020), Bandiera, Fischer, Prat, and Ytsma (2021), Ishihara and Kitagawa (2021),

and Meager (2022).)

Our paper’s method of constructing a counterfactual prediction is closely related to Todd

and Wolpin (2006). They estimate a dynamic structural model of the labor market using pre-

treatment data from a randomized experiment in Mexico and validate the model by comparing

the predictions from the structural model with the randomized experiment results. Then, they

use the model to generate counterfactual predictions from different policies. Instead of build-

ing up a full structural model, we follow Todd and Wolpin (2008) and focus on the nonpara-

metric outcome-policy relationship that is relevant to the policy prediction problem. To deal

with a setting where the policy variable goes out of the support, we develop a new method

that uses data from multiple source populations.

Our synthetic decomposition method is inspired by the method of synthetic control which

currently attracts a wide attention in applied research and the literature of econometrics (see

Abadie (2021) for an overview and the related literature on the method). Both methods are

similar in the sense that they aim to construct a synthetic comparison group using data from

multiple populations, instead of relying on an ad-hoc comparison of various characteristics of

the regions. However, the way the comparison group is constructed is fundamentally different.

The synthetic control method compares the pre-treatment outcomes between the target pop-

ulation and the source populations, whereas the synthetic decomposition method compares

the pre-treatment outcome-policy relationships between the target population and the source

populations on the matched group. The synthetic decomposition method does not require ob-

servations over multiple time periods, but requires individual-level data for each population.

The rest of the paper proceeds as follows. In Section 2, we present our main proposal of the

synthetic decomposition method and discuss conditions for the method to work. In Section

3, we provide procedures of estimation and construction of confidence intervals, assuming

that we observe a random sample of data from each population. In Section 4, we present an

empirical application that studies the prediction problem of average employment when the

minimum wage increases in Texas. In Section 5, we conclude. In the Supplemental Note, we

present general conditions for the proposed confidence intervals to be uniformly asymptotically

valid, as well as formal results and proofs. The Supplemental Note also contains some more

details on the Monte Carlo simulations and the empirical application.
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2. Synthetic Decomposition for Counterfactual Predictions

2.1. The Target Population and Counterfactual Predictions

Suppose that there is a region where we are interested in predicting the outcome of a new

policy. The outcome variable is denoted by Yi and the observed random vector of exogenous

variables by X i. We assume that they are related as follows:

Yi = g0(µ0(X i), Ui),(1)

where Ui is an unobserved random vector, µ0 is a map subject to a change depending on a policy,

and g0 is a map that is invariant to the policy. We call the population in the region the target
population.7 In our paper, we focus on settings where we do not have long time series data,

and hence, the randomness of variables arises only from their within-population cross-sectional

variations. This means that, in our paper, the aggregate variables behave like nonstochastic

quantities. Throughout this paper, we assume that X i does not include any aggregate variables,

and treat observed aggregate variables as “observed parameters.”

A policy is a transform of the map µ0 into µΓ0. Thus, after the policy, the relation between X i

and Yi changes as follows:

Yi = g0

�

µΓ0(X i), Ui

�

.(2)

We call µ0(X i) and µΓ0(X i) the policy components. The main requirement for the policy com-

ponents is that they exhibit cross-sectional variations before and after the policy.

The target parameter is the predicted average outcome after the policy and is written as

θ0 = E0

�

g0

�

µΓ0(X i), Ui

��

,(3)

where E0 denotes the expectation with respect to the target population P0. Our framework

accommodates various forms of policies. We discuss some examples of policy components

below.

Example 1 (Transforming an Individual Covariate): µ0(x) = x and µΓ0(x) = f (x) for

some function f . For example, suppose that X i = (X1,i, X2,i) where X1,i represents an individ-

ual’s income and X2,i represents other demographic characteristics. Now the policy of interest

is an income subsidy by an amount, say, δ > 0, for each individual with X i in a set A. Then,

7It is important to note that the notion of “population” here not only refers to the joint distribution of random
variables, but also depends on the causal model of how the random variables are generated. Hence, two identical
joint distributions that are generated according to different causal models are treated as drawn from different
populations.
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we can take

f (x) = (x1 +δ, x2)1{x ∈ A}+ (x1, x2)1{x /∈ A}.

Even if the amount δ is the same across individuals, the policy components µ0 and µΓ0 generally

exhibit variations at the individual level.8

Example 2 (Changing a Structural Parameter or an Aggregate Variable): µ0(x) =
q(x; v0) for a parametric function q(·; v0) with parameter v0, and µΓ0(x) = q(x; ṽ0) for a dif-

ferent parameter ṽ0. For example, the parameter can represent certain structural parameters

such as parameters of the matching function in search and matching models. Alternatively,

we may consider a setting where the policy affects some aggregate state variable, such as the

minimum wage, the level of a sales tax or the population size through immigration policies.

In such cases, we can view v0 as the aggregate variable that the policy targets, and ṽ0 as its

post-policy value. Note that the aggregate policy variable v0 does not vary at the individual

level, but the policy components q(x; v0) and q(x; ṽ0) can.

It is convenient to introduce what we call the Average Response Function (ARF) as follows:9

m0 (µ, x) =

∫

g0(µ, u)dP0,U |X (u | x).

where P0,U |X denotes the conditional distribution of Ui given X i in the target population (before

the policy). The ARF summarizes the structural relationship between the outcome and the

policy component in the model. Note that the dependence of the ARF m0 (µ, x) on the first

argument µ is causal so that we can use this dependence for counterfactual analysis when we

change the value of µ. However, the dependence on the second argument x is not, because in

this model the causal relation between Ui and X i is left ambiguous. The target parameter is

written as follows:

θ0 =

∫

m0

�

µΓ0(x), x
�

dP0(x).(4)

8It is important to note that this simple setting of counterfactual prediction is already different from the standard
program evaluation setting. Here, the potential outcomes are given as follows:

Yi(0) = g0(µ0(X i), Ui) and Yi(1) = g0(µ
Γ
0(X i), Ui).

However, unlike the standard program evaluation setting, everybody is treated here. Furthermore, we focus on an
ex ante policy evaluation where we do not observe the outcome of the policy for the target population yet. (See
Heckman and Vytlacil (2007) and Wolpin (2013) for the problem of policy analysis in such a setting.)
9The ARF is closely related to the Local Average Response function (LARF) proposed by Altonji and Matzkin
(2005). In fact, if we take µ0(x) = x , and take the derivative of the ARF with respect to the first argument and
evaluate it at the same value as the second argument, the derivative becomes the LARF. The ARF is generally
different from the ASF (Average Structural Function) introduced by Blundell and Powell (2003), unless X i and
Ui are independent.
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From here on, we call the map m0

�

µΓ0(·), ·
�

the post-policy ARF in the target population.10 As

noted by Blundell and Powell (2003) for the case of ASF (Average Structural Function), it is

not always necessary to recover the reduced form g0 from data to obtain the ARF in many

settings. See Canen and Song (2023) for a similar observation in game-theoretic models.

We assume that the target population has not experienced the policy yet. The average coun-

terfactual outcome θ0 is not nonparametrically identified when the policy sends the policy

component outside of its pre-policy support. To address this issue, we may choose a paramet-

ric specification of the map g0 and extrapolate it beyond the support of the pre-policy data.

However, since the counterfactual prediction is not nonparametrically identified, it unavoid-

ably relies on the choice of a parametric specification. To address this challenge, we consider

using information from other populations which have already implemented a similar policy.

We will explain this idea later.

Let X0 be the support of X i in the target population. Define

X Γ0 =
�

x ∈ X0 : µΓ0(x) = µ0( x̃), for some x̃ ∈ X0

	

.(5)

Roughly speaking, the set X Γ0 is the set of values x such that the post-policy value µΓ0(x)matches

up with the pre-policy value µ0( x̃) for some x̃ ∈ X0. We follow Wolpin (2013) and call the set

X Γ0 a matched group.

Example 2.1. Consider the following simple model for Yi for the target population:

Yi = µ0(X i) + Ui,

and assume that X i and Ui are independent with Ui having mean zero, and the policy changes

X i to X i +∆ for some vector ∆. Then, µΓ0(x) = µ0(x +∆), and the ARF is given by the identity

map µ 7→ µ, and the matched group is given by

X Γ0 = {x ∈ X0 : µ0(x +∆) = µ0( x̃) for some x̃ ∈ X0}.

See Figure 1 for an illustration. �

We require the identification of the post-policy ARF for the target population only for x in

the matched group.

10Alternatively, we might be interested in a post-policy Distributional Response Function (DRF): for some set A,

p0(A;µΓ0(x), x) =

∫

1
�

g0(µ
Γ
0(x), u) ∈ A

	

dP0,U |X (u | x).

The quantity represents the conditional probability of Yi taking values from a set A given X i = x , when µ0(X i) is
fixed to be µ0(x). Once we replace m0(µΓ0(x), x) by p0(A;µΓ0(x), x), the main proposal of this paper carries over
to this alternative.
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Density of Xi before the Policy

Density of Xi + Δ after the Policy

Unmatched GroupMatched Group

FIGURE 1. The Matched Group and Unmatched Group from the Policy Shifting
the Distribution of X i: In the analysis of the policy that changes X i to X i +∆, the pre-policy
outcomes of people in the matched group are compared with the post-policy outcomes of other
people in the same population.

Assumption 2.1 (Identification of the Post-Policy ARF on a Matched Group). The set X Γ0 ⊂ X0

is non-empty and m0(µΓ0(x), x) is identified for all x ∈ X Γ0 .

Essentially, Assumption 2.1 requires that a portion of the target population before the policy

can be used to predict outcomes after the policy. If µ0(X i) = X i and X i and Ui are independent,

the ARF is immediately identified as the conditional expectation:

m0(µ, x) = E0 [Yi | X i = µ] .

When X i and Ui are not independent, one can still identify the ARF when there is an appropriate

control function, as shown by Blundell and Powell (2003) for the case of ASF.

2.2. Transfer from a Source Population

Suppose that there is a region 1 which has already experienced the policy. It seems reason-

able to assume that the data from this region should be useful for policy prediction in the target

region in some way or another. We call the population in this region the source population.

Suppose that Yi and X i in the source region are related by the following reduced form:

Yi = g1

�

µΓ1(X i), Ui

�

,
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where the source post-policy ARF, m1(µΓ1(x), x), is identified for each x ∈ X0. The joint distri-

bution of (Yi, X i) can differ between the source and target regions, but we assume the following

transferability condition: for all x ∈ X0,

m1

�

µΓ1(x), x
�

= m0

�

µΓ0(x), x
�

.(6)

The condition (6) says that the average outcome-policy relationship in the source population

is transferable to that in the target population. In this setting, we can identify θ0 as follows:

θ0 =

∫

X Γ0

m0

�

µΓ0(x), x
�

dP0(x) +

∫

X0\X Γ0

m1

�

µΓ1(x), x
�

dP0(x).

This identification strategy can be viewed as originating from the Oaxaca-Blinder decom-

position method in labor economics. To see the connection with the decomposition method,

consider a setting where at time t0, the policy is not implemented and Yi is generated as follows:

Yi = g0 (µ0(X i), Ui) , with X i ∼ P0,X ,

and at time t1 > t0, the policy is implemented and Yi is generated as follows:

Yi = g1

�

µΓ1(X i), Ui

�

, with X i ∼ P1,X .

Here P0,X and P1,X denote the distribution of X i before and after the policy. Then, the difference

between the expected outcomes at times t1 and t0 is given by

E1 [Yi]− E0 [Yi] =

∫

m1

�

µΓ1(x), x
�

(dP1,X (x)− dP0,X (x))(7)

+

∫

�

m1

�

µΓ1(x), x
�

−m0(µ0(x), x)
�

dP0,X (x).

Thus, the change in the mean of Yi before and after the policy is decomposed into the compo-

nent due to the change in the distribution of X i and the component due to the change in the

average outcome-policy relationship. The transferability condition (6) excludes the possibility

that the change of the conditional average outcome given X i between times t0 and t1 is due

to events other than the policy. Under the transferability condition, the second term on the

right hand side of (7) can be interpreted as an average causal effect of the policy in the target

population.

The transferability condition (6) is related to the conditional external validity conditions

used in program evaluations (see Hotz, Imbens, and Mortimer (2005), Hartman, Grieve, Ram-

sahai, and Sekhon (2015), Athey, Chetty, and Imbens (2020), and Gui (2022)). For example,

if we take the potential outcomes

Yi(0) = gk (µk(X i), Ui) and Yi(1) = gk

�

µΓk(X i), Ui

�

, k = 0, 1,
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with k depending on the population the individual i belongs to, then the transferability con-

dition (6) holds if for each x and d = 0, 1, the conditional distribution of Yi(d) given X i = x
remains the same across the two populations. This latter condition follows from the location

unconfoundedness condition of Hotz, Imbens, and Mortimer (2005).

However, the transferability condition in (6) can be strong in practice. We can relax this

transferability condition when we have at least two source populations that satisfy certain

conditions.

2.3. Multiple Source Populations and Synthetic Decomposition

2.3.1. Multiple Source Populations. We assume that there are K regions (e.g., countries,

states, markets, etc.), and each region k = 1, ..., K has a random vector (Yi, X i, Ui) with a

distribution Pk, where for each k = 1, ..., K , we assume that Yi is generated according to the

following reduced form:

Yi = gk(µk(X i), Ui),

where the map gk governs the causal relationship between the outcome variable Yi and the

exogenous variables (µk(X i), Ui) in region k. Note that the causal map, gk, varies per region,

reflecting different structural relationships (e.g., laws, structural parameters, regulations, equi-

libria, etc.) We call Pk’s the source populations. As in the target population, the map µk is sub-

ject to a change by a policy. Each source population k has experienced a policy that changes

µk into µΓk. After the policy, Yi is generated as follows:

Yi = gk

�

µΓk(X i), Ui

�

.

Similarly as for the source population, we define the ARF:

mk (µ, x) =

∫

gk(µ, u)dPk,U |X (u | x),

where Pk,U |X denotes the conditional distribution of Ui given X i in population k. We let Xk

denote the support of X i in the source population Pk.

We introduce the following transferability condition for the source populations. Let ∆K−1

denote the (K − 1)-simplex, i.e., ∆K−1 = {w ∈ RK :
∑

k wk = 1, wk ≥ 0, k = 1, ..., K}.

Assumption 2.2 (Synthetic Transferability). There exists w∗ = (w∗1, ..., w∗K) ∈∆K−1 such that

m0

�

µΓ0(x), x
�

=
K
∑

k=1

mk

�

µΓk(x), x
�

w∗k(8)

for all x ∈ X0.
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The synthetic transferability condition is weaker than the condition in (6) in the sense that

none of the source post-policy ARFs is required to be identical to that in the target population.

The major distinction between the target population and the source population is that,

unlike the target population, each source population has experienced a policy Γk such that

mk(µΓk(x), x) is identified for all x ∈ X0. We state this condition formally below.

Assumption 2.3 (Rich Support). For all k = 1, ..., K and all x ∈ X0, mk(µΓk(x), x) is identified.

Assumption 2.3 requires that the post-policy ARF mk(µΓk(x), x) is identified on the support

of X i in the target population. One can view Assumption 2.3 as an “eligibility condition” for

any population to serve as a source population for the prediction problem.

Let us introduce the last condition for the source populations. It requires that these popula-

tions are not redundant in an appropriate sense. Define

m(x) = [m1(µ
Γ
1(x), x), ..., mK(µ

Γ
K(x), x)]>,

and let

H =

∫

X Γ0

m(x)m(x)>dP0(x).

Assumption 2.4. H is invertible.

Assumption 2.4 requires that the post-policy ARFs, mk(µΓk(·), ·), k = 1, ..., K , be linearly in-

dependent on X Γ0 . This assumption is used to point-identify the weight w∗ in the Synthetic

Transferability assumption. This assumption can be removed with a minor modification of our

proposal. Thus, in the Supplemental Note, we present a modified inference procedure which

does not require the point-identification of w∗ and thus Assumption 2.4.

2.3.2. Synthetic Decomposition. Here, we propose our main method of synthetic decompo-

sition. For a given weight w= (w1, ..., wK)> ∈∆K−1, we define

θ (w) =

∫

X Γ0

m0

�

µΓ0(x), x
�

dP0(x) +

∫

X0\X Γ0

msyn (x;w) dP0(x),(9)

where

msyn(x;w) =
K
∑

k=1

mk(µ
Γ
k(x), x)wk.

The relevance of θ (w) to the original problem of prediction in the target population depends

on the choice of the weight w. Whenever w∗ is the weight vector satisfying the synthetic

transferability condition, we have

θ0 = θ (w
∗).
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In fact, under Assumptions 2.2-2.4, we can identify w∗ =w0, where

w0 = arg min
w∈∆K−1

ρ2(w),(10)

and

ρ2(w) =

∫

X Γ0

�

msyn (x;w)−m0

�

µΓ0(x), x
��2

dP0(x).(11)

Hence, the weight w0 brings the synthetic ARF msyn(x;w) as close as possible to the target ARF,

m0(µΓ0(x), x), for x ∈ X Γ0 . The integral in the pseudo-distance ρ is taken only on the matched

group. Therefore, both msyn (x;w) and m0

�

µΓ0(x), x
�

are identified on the matched group.

From this w0, we obtain the identification of θ0 as follows.

Theorem 2.1. Suppose that Assumptions 2.2-2.4 hold. Then, θ0 is identified as θ (w0).

When the synthetic transferability condition fails, the prediction θ (w0) is still derived from

the weighted average of the outcome-policy relationships which is chosen to be as close as
possible to meeting the synthetic transferability condition, based on their predictive performance

on the pre-policy support of X i in the target population. Naturally, those source populations

with the outcome-policy relationships most similar to that of the target population on the

matched group receive a highest weight by design.

To see the role of the rich support condition in Assumption 2.3, we decompose it into the

following two conditions:

(a) For all k = 1, ..., K and all x ∈ X Γ0 , mk(µΓk(x), x) is identified.

(b) For all k = 1, ..., K and all x ∈ X0 \X Γ0 , mk(µΓk(x), x) is identified.

Condition (a) is used to identify the objective function ρ(w) in (10), so that we obtain w0.

Condition (b) is used to identify θ (w) defined in (9).

To see the role of the invertibility condition in Assumption 2.4, first define

h=

∫

X Γ0

m(x)m0

�

µΓ0(x), x
�

dP0(x).

Then, it is not hard to see that we can rewrite

w0 = arg min
w∈∆K−1

�

w−H−1h
�>

H
�

w−H−1h
�

.(12)

We can see that the solution w0 defined in (10) is unique.

The crucial identifying restriction for the synthetic decomposition method is that the weight

w∗ in the synthetic transferability hypothesis remains the same regardless of whether x ∈ X Γ0
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and x ∈ X0 \X Γ0 . Later, we relax the synthetic transferability assumption so that w∗ is allowed

to depend on a subvector of X i that is not part of the policy variable.11

2.3.3. Synthetic Decomposition and Linear Extrapolation. We can view the synthetic de-

composition as a form of extrapolation from multiple source populations to a target population.

In particular, when (i) the outcome-policy relationships follow a linear regression model and

(ii) the synthetic transferability condition holds, the synthetic decomposition coincides with

parametric extrapolation.

To see this, consider the simple model in Example 2.1 and suppose that the reduced forms

follow the same linear regression specification,

Yi = X>i β0 + Ui and Yi = X>i βk + Ui, k = 1, ..., K ,

where β0 belongs to the convex hull of βk’s. This latter condition implies the synthetic trans-

ferability condition as we have
K
∑

k=1

w∗kβk = β0,(13)

for some weight vector w∗ = (w∗1, ..., w∗K). Unsurprisingly, in this case the synthetic decom-

position method chooses a weighted average of the outcome-policy relationships and yields a

prediction that coincides with the one from a linear extrapolation in the target population.

2.4. Examples

We now provide two applied examples that fit our framework.

2.4.1. Minimum Wages and Labor Supply. Minimum wages are one of the most prevalent

and widely debated policies for the labor market. When studying the effects of counterfactual

raises in minimum wages on employment, rather than past raises, the literature often uses

search-and-bargaining models (e.g., Flinn (2006); Ahn, Arcidiacono, and Wessels (2011); Flinn

and Mullins (2015)). In Section 4, we carefully rewrite the model of Ahn, Arcidiacono, and

Wessels (2011) to fit our framework. We give a brief overview here.

Let Yi, j ∈ {0,1} denote the employment status of worker i after a match with firm j, X i as

worker i’s observable characteristics (age, race, etc.), W k as the prevailing minimum wage in

region k that i is subject to, and Ui, j as a match-specific unobservable (shocks, unobserved

11This identifying strategy is precisely the way synthetic control methods identify the counterfactual non-
treatment outcome of the treated unit as a weighted average of the outcomes in the donor pool of control units.
The underlying assumption here is that the weights obtained from the pre-treatment outcomes remain valid after
the treatment.
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types) drawn from a CDF Fk. As we explain in Section 4, the wage generation in Ahn, Arcidi-

acono, and Wessels (2011) can be written as:

Wi, j =max{βkMi, j, W k},(14)

where βk ∈ (0,1) is a parameter that represents the worker i’s bargaining strength in region k,

Mi j is the match productivity drawn for worker i with firm j. We parameterize the generation

of Mi, j as follows:

log Mi, j = X>i γk + Ui, j.

The employment indicator, Yi, j, equals one if the match surplus is higher than the wage:

Yi, j = 1{Mi, j ≥Wi, j}= 1{Mi, j ≥W k}= 1{X>i γk + Ui, j ≥ log(W k)}(15)

where the first equality follows from (14) and βk ∈ (0, 1) and the second one after applying

logs.

Now, suppose that minimum wages in Texas increase to US$9 and we want to predict its

effects on employment. Then, Texas would be the target region 0. In order to apply the

synthetic decomposition method, we first set the policy component for region k as

µk(X i) = X>i γk − log(W k).

The counterfactual policy sets µΓ0(X i) = X>i γk− log(9). States that have had the policy variable

µk(X i) overlapping with µΓ0(X i) (e.g., California, Washington) would be source regions. Hence,

it follows from (15) that:

gk(µ, u) = 1{µ+ u≥ 0}.

The ARF for state k is identified as

mk(µ, x) = 1− Fk(−µ).(16)

The ARF is identified as the share of workers in state k whose productivity is higher than the

minimum wage in state k. As we show in Section 4, the policy component parameter γk is

identified from a semiparametric censored regression of wages:

Wi, j =max{logβk + X>i γk + Ui, j, W k}.

Then, we can identify the ARF mk using (16) as mk(µ, x) = E[Yi,k | µk(X i) = µ]. Note that we

do not need to parametrize the distribution of Ui, j.

2.4.2. Tax Policy and Immigration. Changes to income tax rates may immediately affect tax

revenue, but they may also change the composition of the population. For instance, high

earners may choose to emigrate when facing higher taxes. This matters for welfare, as such
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high earners are highly mobile and pay a large share of taxes.12 (See Scheuer and Werning

(2017) for a theoretical investigation and Moretti and Wilson (2017), Akcigit, Baslandze, and

Stantcheva (2016); Kleven, Landais, and Saez (2013) and Kleven, Landais, Saez, and Schultz

(2014) for evidence on the effects of past changes to tax policies, including Danish and Spanish

reforms).

To evaluate the effects of a decrease in tax rates in country 0 (e.g., U.K.) on high earners’

immigration, we could follow Kleven, Landais, and Saez (2013) and model this as a discrete

choice problem. A high earner i’s preference, Vi,k, for living in country k depends on the average

tax rate τk on the wage Wi the individual would face, and is specified as follows:

Vi,k = α log(1−τk) +α log(Wi) + Z>i βk + Ui,k.(17)

The first two terms represent the (concave) preferences over net-of-tax wages, Z ′iβk captures

heterogeneity of worker preferences for each country (which may depend on age, nationality,

etc.), with Zi denoting the observed characteristics of the individual i, and Ui,k represents an

idiosyncratic Extreme Value Type 1 shock which is i.i.d. across individuals and regions. (Note

that for high earners, the average tax rate is approximately equal to the marginal tax rate

which is the same across all the high earners.) Then, individual i’s decision to live in region k
is represented by a binary indicator Yi as follows:

Yi = 1
§

Vi,k >max
j 6=k

Vi, j

ª

.(18)

To apply the synthetic decomposition method, we take the policy component for the indi-

vidual as: for each k = 0, 1, ..., K , and for each individual i in region k with X i = (Wi, Zi),

µk(X i) = α log(1−τk) +α log(Wi) + Z>i βk.

The target country is the U.K., and the policy of interest is lowering tax rates in the U.K. so that

µΓ0(X i) = α log(1−τΓ0) +α log(Wi) + Z>i β0,

for τΓ0 < τ0. Therefore, the ARF for country k is identified as

mk(µ, x) =
exp(µ)

exp(µ) +
∑

j 6=k

exp(µ j(x))
.

The matched group is constructed as in (5) using the definitions of µ0(x) and µΓ0(x) above.

12In 2016, the top 1% of households in the U.S. earned 16% of the total income while paying 25% of all federal
taxes. However, their income, accumulated wealth and favorable immigration policies permit straightforward
changes to residence status, making them very responsive to tax policy. See https://doc-research.org/
2019/01/global-mobility-wealthy-push-pull-factors/ for a policy overview.

https://doc-research.org/2019/01/global-mobility-wealthy-push-pull-factors/
https://doc-research.org/2019/01/global-mobility-wealthy-push-pull-factors/
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2.5. Extensions

2.5.1. Policy Prediction with Observed Time-Varying Aggregated Variables. In many em-

pirical applications, we observe individuals over multiple time periods (either in panel data or

in rotational cross-sectional data) and aggregate variables that affect individual outcomes. The

aggregate variables may represent regional economic states and often contain a policy variable

such as a change in the minimum wages or taxes. Here we show how our method applies to

this case.

First, consider the generation of outcomes for populations k = 0,1, ..., K in periods t =
1, ..., T :

Yi t = gk(µk(X i t; zk,t , vk,t), zk,t , Ui t), i ∈ Nk.

Here X i t denotes a vector of individual covariates and vk,t and zk,t the vectors of time-varying

observed aggregate variables for population k. The policy sets the vector vk,t to v∗0 . The policy

component µk(X i t; vk,t , zk,t) is allowed to depend on the observed aggregate characteristics of

region k. It is required to exhibit individual-level variations through X i t .

For each region k = 0, 1, ..., K , the ARF is written as

mk,t(µ, x , zk,t) =

∫

gk(µ, zk,t , u)dPk,t(u | x , zk,t),

for each (µ, x) on the support of (µk(X i t; zk,t , vk,t), X i t), where Pk,t(· | x , z) denotes the condi-

tional distribution of Ui t given X i t = x and zk,t = z, for i ∈ Nk. We assume that there are not

many time periods in the sample, and hence, any aggregate observed variables are regarded

as “observed constants.”

Our main interest is in predicting the average outcome of Yi t for population 0, when the

policy changes v0,t into v∗0 . Then, our target parameter is defined as

θ0,t(v
∗
0) =

∫

m0,t

�

µ0(x; z0,t , v∗0), x , z0,t

�

dP0,t(x),

where P0,t denotes the distribution of X i t in the target population. The quantity θ0,t(v∗0) repre-

sents the average outcome when the distribution of X i,t and the value of the aggregate variables

z0,t are fixed at those at time t, and the policy changes the variable v0,t into the counterfactual

one v∗0 .

Let us see how our method applies in this setting. First, we take the matched group as

X Γ0,t =
�

x ∈ X0,t : µ0(x; z0,t , v∗0) = µ0( x̃; z0,t , v0,t), for some x̃ ∈ X0,t

	

,

where X0,t denotes the support of X i t in the target population. The synthetic transferability

condition is given as follows: there exists a weight vector w∗(v∗0) such that for each x ∈ X0,t ,
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we have

m0,t

�

µ0(x; z0,t , v∗0), x , z0,t

�

=
K
∑

k=1

mk,t

�

µk,t(x; zk,t , vk,t), x , zk,t

�

w∗k(v
∗
0).

(We make it explicit that the weight depends on the value of v∗0 .) We can identify the weights

by minimizing ρt(w) over w, where

ρ2
t (w) =

∫

�

M0,t(x; z0,t , v∗0)−
K
∑

k=1

Mk,t(x; zk,t , vk,t)wk

�2

dP0,t(x),

where for k = 0,1, ..., K and t = 1, ..., T , we define

Mk,t(x; z, v) = mk,t(µk(x; z, v), x , z)1{x ∈ Xk,t},

with Xk,t denoting the support of X i t for i ∈ Nk. Let w0(v∗0) be the minimizer of ρt(w) over

w ∈∆K−1. Using the weight w0(v∗0), we can identify θ0 as follows:

θ0,t(v
∗
0) =

∫

X Γ0,t

m0,t(µ0(x; z0,t , v∗0), x , z0,t)dP0,t(x)(19)

+
K
∑

k=1

 

∫

X0,t\X Γ0,t

mk,t(µk(x; zk,t , vk,t), x , zk,t)dP0,t(x)

!

w0,k(v
∗
0).

The average effect of changing v0 from v′0 to v∗0 is given by

θ0,t(v
∗
0)− θ0,t(v

′
0).

When v′0 is chosen to be v0,t in the target region, we can obtain θ0,t(v0,t) in two different ways.

The first way is to obtain θ0,t(v0,t) by replacing v∗0 with v0,t in (19) and the second way is to

obtain

θ0,t(v0,t) =

∫

X0,t

m0,t(µ0(x; z0,t , v′0), x , z0,t)dP0,t(x).

If the estimates of θ0,t(v0,t) obtained through two different ways are close to each other, this

suggests that the synthetic transferability condition is supported by data.

2.5.2. Spillover of Policy Effects Across Regions. A policy in one region can often have a

spillover effect on other regions. For example, the immigration of high-skilled workers in

response to a change in tax policy in a target region (as in Kleven, Landais, and Saez (2013))

would affect the number of immigrants in source regions. We show that the situation with

spillover effects can be accommodated in our proposal.

We consider two types of spillover effects. The first is the spillover effect of policies from

the source regions on the target region. The spillover effect is something that has already
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happened and is reflected in the data at the time when the policymaker considers implementing

a new policy on the target population. For instance, source countries with lower taxes have

already received high-skilled immigrants from the target region. The spillover effect of source

regions’ policies on the target region’s outcomes realizes through its impact on the exogenous

variables X i and Ui, as prescribed in the reduced form in (1). As such, the spillover effect

is entirely mediated through the variations in X i, and its presence does not alter anything in

our proposal, because it is among the many sources of exogenous variations in X i which we

can use to identify the ARF. On the other hand, if the spillover effect is an additional source

of endogeneity (i.e., the correlation between X i and Ui), we need to carefully search for an

identification method using instrumental variables or resorting to a control function approach

(e.g., Blundell and Matzkin (2014)). Once the ARF is identified, this paper’s proposal can be

applied.

The second spillover effect is from the policy of the target population to other regions. This

is a spillover effect that is not yet reflected in the data, and hence part of our counterfactual

analysis of policy in the target population. For example, a decrease in tax rates in the target

region (say, the U.K.) would induce immigration away from source regions (e.g., Spain). Our

definition of the pre-policy population will then be the population that consists of people be-

fore the migration induced by the policy, and likewise the post-policy population will be the

population that consists of people after the migration. Therefore, the policy effect, according

to our definition, includes both the effect on the people who do not migrate as a consequence

and the composition effect that arises due to the migration.

For example, suppose that the policy not only changes µ0 into µΓ0, but also alters the dis-

tribution P0 into P0 ◦ f −1 for some map f . The latter change corresponds to changing X i into

f (X i). Now, the post-policy prediction includes both the effects, so that we can take

θ0 =

∫

f (X0)

m0

�

µΓ0(x), x
�

d(P0 ◦ f −1)(x)

=

∫

X0

m0

�

µΓ0( f (x), f (x))
�

dP0(x).

Hence, by redefining the policy operator, Γ , we can study the effect of a policy that has a

spillover effect through migration.13

2.5.3. Covariate-Dependent Weights. The synthetic transferability condition assumes that

the weights are the same across different demographic groups, and this may be restrictive in

some applications. For example, suppose that we have two source regions 1 and 2, where a

13However, in contrast to the previous situations, we may need to estimate the “policy” Γ as it includes its com-
position effect through migration from the target region.
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high education group in region 1 is matched better with a high education group in the target

region than region 2, whereas a low education group in region 2 is matched better with a low

education group in the target region than in region 1. By allowing the weight to depend on

the education indicator, we can accommodate such a situation flexibly.

Suppose that X i = (X i,1, X i,2), where we denote the supports of X i,1 and X i,2 in regions k =
0,1, ..., K by Xk,1 and Xk,2 respectively. For each individual i who belongs to population k =
0, 1, ..., K , we have

Yi = gk(µk(X i,1), X i,2, Ui), before the policy

Yi = gk(µ
Γ
k(X i,1), X i,2, Ui), after the policy.

We define a generalized version of the synthetic ARF: for a subvector x̃2 of x2, with x = (x1, x2),

msyn(x;w) =
K
∑

k=1

mk

�

µΓk(x1), x2

�

wk( x̃2),

where wk( x̃2) is a nonnegative function such that
∑K

k=1 wk( x̃2) = 1, and wk( x̃2) is the k-th

entry of w( x̃2). We denote by X̃0,2 the support of the corresponding subvector X̃ i,2 of X i,2 in the

target population. In contrast to the previous case, the weight given to a source region k can

vary across different people in the target region depending on the value of their covariate x̃2.

Hence, w is a map from X̃0,2 to∆K−1. Similarly as above, we obtain a counterfactual prediction

for policy Γ0 for the target region 0 as θ (w) in (9) with this redefined msyn(x;w).
To motivate the problem of selecting the weight vector w, we introduce a generalized version

of the transferability condition.

Assumption 2.5 (Generalized Synthetic Transferability). For some map w∗ : X̃0,2→∆K−1,

msyn (x;w∗) = m0

�

µΓ (x1), x2

�

, for all x = (x1, x2) ∈ X0.

The previous synthetic transferability condition is a special case of this condition. We now

construct the optimal weight as follows. First, we can define

w0 = arg inf
w:X̃0,2→∆K−1

ρ2(w),

and

ρ2(w) =

∫

X Γ0

�

m(x)>w( x̃2)−m0

�

µΓ0(x1), x2

��2
dP0(x),(20)

where m(x) = [m1(µΓ1(x1), x2), ..., mK(µΓK(x1), x2)]>. The quantity ρ(w0) is smaller than that

in (11), because the domain of the minimizers w is larger now. This means that the covariate-

dependent weight will exhibit a better fit than the previous weights.
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One can obtain a prediction for the target population as θ (w0) using this weight, w0( x̃2). To

obtain a characterization of this generalized weight, we first define

H( x̃2) =

∫

X Γ0

m(x)m(x)>dP0(x | x̃2), and

h( x̃2) =

∫

X Γ0

m(x)m0(µ
Γ
0(x1), x2)dP0(x | x̃2),

where P0(· | x̃2) denotes the conditional distribution of X i given X̃ i,2 = x̃2 in the target popula-

tion. We replace Assumption 2.4 by the following assumption.

Assumption 2.6. For each x̃2 ∈ X̃0,2, H( x̃2) is invertible.

This assumption excludes the situation where X i,1 = X i. In other words, there must be

variables in X i that are excluded from the covariate X i,1 that the weight is allowed to depend

on. Then, it is not hard to see that

w0( x̃2) = arg inf
w∈∆K−1

�

w−H−1( x̃2)h( x̃2)
�>

H( x̃2)
�

w−H−1( x̃2)h( x̃2)
�

.

Again, under Assumption 2.6, w0 is uniquely determined. Hence under the generalized syn-

thetic transferability condition, we have θ0 = θ (w0). This approach is not very computationally

costly when X̃ i,2 is a discrete random variable with its support having only a few points.

3. Estimation and Confidence Intervals

3.1. Estimation

Let us first consider the estimation of w0 and θ (w0). As for the estimation of w0, we first

make use of the characterization (12) and consider its sample counterpart. For each k =
1, ..., K , we first estimate the post-policy ARFs to obtain m̂k

�

µ̂Γk(x), x
�

using the sample from

the source population Pk. We let X̂ Γ0 be an estimated set of X Γ0 using the sample from the target

population and construct the sample version of H and h as follows:

Ĥ =
1
n0

∑

i∈N0

m̂(X i)m̂(X i)
>1
�

X i ∈ X̂ Γ0
	

, and(21)

ĥ=
1
n0

∑

i∈N0

m̂(X i)m̂0

�

µ̂Γ0(X i), X i

�

1
�

X i ∈ X̂ Γ0
	

,

where m̂(x) = [m̂1(µ̂Γ1(x), x), ..., m̂K(µ̂ΓK(x), x)]>. Note that each ARF, m̂k(µ̂Γk(·), ·), is con-

structed using the sample from the source region k, whereas in constructing Ĥ and ĥ, it is
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evaluated at a data point X i of the sample from the target region. Using these, we obtain

ŵ= arg min
w∈∆K−1

�

w− Ĥ−1ĥ
�>

Ĥ
�

w− Ĥ−1ĥ
�

.

In the Supplemental Note, we show that ŵ is
p

n0-consistent for w0.14

Using the estimated weight, ŵ, we obtain the prediction for the target region as follows:

θ̂ (ŵ) =
1
n0

∑

i∈N0

m̂0

�

µ̂Γ0(X i), X i

�

1{X i ∈ X̂ Γ0 }+
1
n0

∑

i∈N0

m̂syn (X i; ŵ)1{X i ∈ X0 \ X̂ Γ0 },(22)

where

m̂syn (x; ŵ) =
K
∑

k=1

mk

�

µ̂Γk(x), x
�

ŵk.

We will show below that, under regularity conditions, the estimator θ̂ (ŵ) is
p

n0-consistent.

3.2. Confidence Set for w0

Let us consider constructing confidence intervals for θ (w0). Since w0 can take a value arbi-

trarily close to the boundary of the simplex ∆K−1, it turns out that
p

n0(θ̂ (ŵ)− θ (ŵ))→d ζ,(23)

where ζ is a complicated non-Gaussian distribution that depends on whether w0 is in the

interior of ∆K−1 or on the boundary of ∆K−1. And if it is on the boundary, what part of the

boundary w0 is located in. While one might consider using a naive bootstrap where one first

constructs a bootstrap counterpart of the quantity
p

n0(θ̂ (ŵ0)− θ (ŵ)) and uses its bootstrap

distribution in place of the asymptotic distribution, this approach does not work. Such a failure

of the bootstrap when the parameter is on the boundary was shown by Andrews (2000).

In this paper, we pursue an approach that does not require the researcher to find the details

of the limiting distribution ζ, which may change depending on the specifications of the models

and estimation methods. To construct the confidence set, we first formulate the identification

of w0 as a solution to a constrained optimization, and using a Kuhn-Tucker condition, formu-

late the identification in terms of a set of equality restrictions with a nuisance parameter that

is constrained to a convex cone. The problem of asymptotic inference in such a setting has

been studied in the literature (see, for example, Rosen (2008), Moon and Schorfheide (2009),

Kitamura and Stoye (2018)). Here, we follow the approach of Mohamad, van Zwet, Cator,

and Goeman (2020) and Cox and Shi (2022) to construct a test statistic for the restrictions

14As we formally state later, we assume that the size of a random sample from each population is asymptotically
comparable across the populations, i.e., there exists rk > 0 such that nk/n0 → rk as n0, nk → ∞ for each
k = 1, ..., K .
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and invert it to form a confidence set for w0. This approach is simple and does not involve

tuning parameters often required in the problem of testing for inequality restrictions. Later,

we show that this confidence set is uniformly asymptotically valid. This approach is generally

applicable whenever we have
p

n0-consistent estimators of H and h. This often follows from a

wide range of estimators of the ARFs.

First, let us construct a confidence set for w0. For this, we form an equality restriction using

the Lagrangian of the constrained optimization in (12):

L(w, λ̃,λ) = (w−H−1h)>H(w−H−1h) + λ̃(1−w>1)−λ>w,

where λ̃ and λ are Lagrange multipliers.

By the Kuhn-Tucker condition and the strict convexity of the objective function, the necessary

and sufficient conditions for w0 ∈∆K−1 to be the unique minimizer of ρ(w) are that for some

λ̃ ∈ R and λ ∈ Λ(w0),

Hw0 − h+ λ̃1−λ= 0,(24)

where 1 is the K × 1 vector of ones, 0 is the K × 1 vector of zeros, and

Λ(w0) =
�

λ ∈ RK : λ>w0 = 0 and λ≤ 0
	

.(25)

If we concentrate out λ̃ using the restrictions w>0 1= 1 and λ′w0 = 0, we obtain that

f(w0)−λ= 0, for some λ ∈ Λ(w0),(26)

where f(w0) = Hw0 − h−w>0 (Hw0 − h)1. We form a test statistic that tests the restriction in

(26) as follows:

T (w0) = n0 inf
λ∈Λ(w0)

�

f̂(w0)−λ
�>
Ω̂−1

�

f̂(w0)−λ
�

,(27)

where f̂(w0) is the same as f(w0) except that H and h are replaced by Ĥ and ĥ, and Ω̂ is a scale

normalizer which we explain later.15

As for critical values, we follow the approach of Mohamad, van Zwet, Cator, and Goeman

(2020) and Cox and Shi (2022). First, for each w ∈∆K−1, we let λ̂(w) be the solution λ in the

minimization problem in (27) with w0 replaced by the generic w ∈∆K−1. Then the confidence

set for w0 is given by

C̃1−κ = {w ∈∆K−1 : T (w)≤ ĉ1−κ(w)} ,(28)

15The method of constructing a test statistic from a constrained optimization over Lagrangian multipliers appeared
in Moon and Schorfheide (2009). The main difference here is that in our case, the inequality restrictions are
crucial for the point-identification of w0, whereas, in their case, the parameters are point-identified using only
equality restrictions, and hence their use of quadratic approximation for constructing a critical value does not
apply in our setting.
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where ĉ1−κ(w) denotes the 1− κ percentile of the χ2 distribution with the degree of freedom

equal to the number of zero entries in λ̂(w). The test 1{T (w) ≤ ĉ1−κ(w)} is essentially what

Cox and Shi (2022) called the CC test in their paper. The main difference is that f(w0) is not

necessarily the expectation of a random vector in our setting. Otherwise, our setting is much

simpler than Cox and Shi (2022) because the inequality restrictions (as represented by the

constraint λ ∈ Λ(w0)) do not involve any unknowns.

We may be interested in checking whether data support the synthetic transferability condi-

tion in (28). The confidence set C̃1−κ for w0 defined in (28) can be used to test an implication

from the condition. Consider testing the following implication from the synthetic transferabil-

ity condition:

H0 : There exists w ∈∆K−1 such that m0(µ
Γ
0(x), x) = msyn(x;w) for all x ∈ X Γ0 .

H1 : H0 is false.

We set κ in C̃1−α to be the level of the test and perform the following procedure. If C̃1−α = ∅,

we reject H0 at level α. Otherwise, we do not reject H0 at level α.

Now, let us discuss the bootstrap construction of Ω̂. First, we construct a bootstrap sample

as follows. Since each population has a different distribution, we need to resample (with

replacement) from each region. For each region k = 0, 1, ..., K , let {W ∗
i : i ∈ Nk} be the

bootstrap sample from the sample {Wi : i ∈ Nk}, where Wi = (Yi, X ′i )
>, i ∈ N , and

N =
K
⋃

k=0

Nk.

Then for each k = 0,1, ..., K , we construct the bootstrap version of the extended post-policy

ARF, m̂∗k(µ̂
Γ∗
k (·), ·), using the bootstrap sample from the region k, and define

m̂∗(·) =
�

m̂∗1
�

µ̂Γ∗1 (·), ·
�

, ..., m̂∗K
�

µ̂Γ∗K (·), ·
��>

,

and let

Ĥ∗ =
1
n0

∑

i∈N0

m̂∗(X ∗i )m̂
∗(X ∗i )

>1
�

X ∗i ∈ X̂ Γ∗0

	

, and

ĥ∗ =
1
n0

∑

i∈N0

m̂∗(X ∗i )m̂
∗
0

�

µ̂Γ∗0 (X
∗
i ), X ∗i

�

1
�

X ∗i ∈ X̂ Γ∗0

	

.

Then, we define

γ̂∗ =
p

n0

�

Ĥ∗ − Ĥ
�

ŵ−
p

n0

�

ĥ∗ − ĥ
�

−
p

n0ŵ>
�

Ĥ∗ − Ĥ
�

1+
p

n0ŵ>
�

ĥ∗ − ĥ
�

1.
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To construct a scale normalizer Ω̂, we apply the truncation method of Shao (1992) as follows.

For each k = 1, ..., K , we define

τ̂k =
p

n0 max
��

�

�

Ĥŵ− ĥ
�

k

�

� , c0

	

,

for some constant c0 > 0 such as c0 = 0.05, and construct a truncated version of γ̂∗ as γ̃∗ =
[γ̃∗k]

K
k=1, where

γ̃∗k =







τ̂k, if γ∗k ≥ τ̂k,

γ̂∗k, if −τk ≤ γ̂∗k ≤ τ̂k, and

−τ̂k, if γ∗k ≤ −τ̂k,

and γ̂∗k denotes the k-th entry of γ̂∗. Thus, we construct γ̃∗ for each bootstrap sample b =
1, ..., B. Let us denote it by γ̃∗b. Then we construct16

Ω̂=
1
B

B
∑

b=1

γ̃∗bγ̃
∗>
b −

�

1
B

B
∑

b=1

γ̃∗b

��

1
B

B
∑

b=1

γ̃∗b

�>

.(29)

3.3. Confidence Intervals for θ (w0)

Now, let us construct the confidence interval for θ (w0). First, we can show that

n0(θ̂ (w0)− θ (w0))2

σ̂2
→d χ

2(1),(30)

for an appropriate scale normalizer. To construct σ̂, we use a bootstrap interquartile range

as proposed by Chernozhukov, Fernández-Val, and Melly (2013) in a different context. More

specifically, we define

θ̂ ∗(w) =
1
n0

∑

i∈N0

m̂∗0
�

µ̂Γ∗0 (X
∗
i ), X ∗i

�

1
�

X ∗i ∈ X̂ Γ∗0

	

+
1
n0

∑

i∈N0

m̂syn∗
�

X ∗i ;w
�

1
�

X ∗i /∈ X̂ Γ∗0

	

,

where

m̂syn∗ (x;w) =
K
∑

k=1

m̂∗k
�

µ̂Γ∗k (x), x
�

wk.

We let

T ∗ =
p

n0

�

θ̂ ∗(ŵ)− θ̂ (ŵ)
�

.

16As pointed out by Hahn and Liao (2021), without using the truncation, the confidence set C̃1−κ is still asymp-
totically valid, although it is conservative. In our simulations, the truncation does not make any meaningful
difference in the results.
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We read the 0.75 quantile and 0.25 quantile of the bootstrap distribution of {T ∗ : b = 1, ..., B},
and denote them to be q̂0.75 and q̂0.25, respectively. Define

σ̂ =
q̂0.75 − q̂0.25

z0.75 − z0.25
,

where z0.75 and z0.25 are the 0.75- and 0.25-quantiles of N(0,1).
Define

T̂ (w,θ ) =
p

n0(θ̂ (w)− θ )
σ̂

.

We construct the (1−α)-level confidence interval using the Bonferroni approach as follows:

C1−α =

�

θ ∈ Θ : inf
w∈C̃1−κ

T̂ 2(w,θ )≤ c1−α+κ(1)

�

,(31)

where κ > 0 is a small constant, such as κ = 0.005, and c1−α+κ(1) denotes the (1 − α + κ)-
quantile of the χ2(1) distribution.

3.4. Uniform Asymptotic Validity

We summarize the conditions that we use to establish the uniform asymptotic validity of the

confidence set C1−α. Here, we state the conditions verbally. The formal statements and the

proof are found in the Supplemental Note.

Assumption 3.1. (i) The post-policy ARFs in the target and source populations have the 4+δ-

th finite moment uniformly over P.

(ii) The estimated post-policy ARFs and their bootstrap versions have an asymptotic linear

representation uniform over P, with the influence function having the 4+ δ-th finite moment

uniformly over P.

The moment condition is a technical condition that is often used in asymptotic inference.

The asymptotic linear representation is often part of the proofs that show asymptotic normality

of an estimator. Its derivation is standard in many examples.

Assumption 3.2. The matrix H and the population version of Ω̂ have minimum eigenvalues

bounded from below uniformly over n and P.

This assumption requires that the post-policy ARFs are not redundant. As mentioned be-

fore, we can relax this assumption once we modify the procedure. Details are found in the

Supplemental Note.

Assumption 3.3. For each k = 0, 1, ..., K , there exists a constant rk > 0 such that nk/n0→ rk,

as n0, nk→∞.
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Under these conditions, we can show that the confidence interval C1−α is asymptotically valid

uniformly over P.

Theorem 3.1. Suppose that Assumptions 3.1-3.3 hold. Then, for each α ∈ (0, 1), the confidence
interval C1−α is asymptotically valid uniformly over P.

The proof of the theorem is found in the Supplemental Note.

3.5. Monte Carlo Simulations

In the Supplemental Note, we present Monte Carlo simulations exploring the finite sample

properties of our inference procedure.

We consider a total of eight exercises: two specifications for the ARF, two different amounts

of overlap of the support of the policy variable between target and source regions (small, 50%,

or large, 90%), and two sample sizes (n0 = 500,1000). In particular, the ARF specifications

differ by: (i) having w0 to be in the interior or on the boundary of the simplex, and (ii) different

functional forms for the relationship between the outcome and the policy variable.

The results for the coverage probability and the average length of the confidence interval are

shown in Table 3, while the results on the finite sample properties for the estimators ŵ, θ̂0(ŵ)
are shown in Table 4. Across specifications, inference for the target parameter (θ0) is typi-

cally conservative, as seen in Table 3: their empirical coverage probabilities are usually above

95%, the nominal level for all sample sizes and specifications, with the coverage probabilities

closer to 100% in most cases. Consistent with our asymptotic results, the average length of

the confidence interval decreases as the sample size grows across specifications and inference

approaches. The average length of the confidence interval is smaller when there is a larger

overlap between the support of the policy variable in the target region and the source regions.

In this case, there is more information from the target region that can be used for identification

and estimation of our target parameter.

Finally, our estimators for θ0 and w0 seem to perform very well pointwise: the Root Mean

Square Error (RMSE) for θ̂ and ŵ are small. Furthermore, the average bias and variance of

θ̂ (ŵ) across simulations are close to 0, suggesting that our estimator is close to the true values

even with moderate sample sizes.
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4. Empirical Application: Minimum Wages and Labor Supply

4.1. Background

Minimum wages have been among the most studied and debated policies for the labor mar-

ket, spurring an immense literature in economics. The predominant paradigm in empirical

work is to study their effects on employment or other outcomes by leveraging their state-level

variation. This includes difference-in-difference designs with Two-Way Fixed Effects models

(which Neumark (2019) summarizes as the workhorse approach), synthetic control (see Alle-

gretto, Dube, Reich, and Zipperer (2017); Neumark and Wascher (2017) for extensive discus-

sions), decomposition methods (DiNardo, Fortin, and Lemieux (1996)), cross-border compar-

isons (Dube, Lester, and Reich (2010)), among others.

While this literature can evaluate minimum wage increases that have already been imple-

mented, they are by-and-large inappropriate to predict the effects of policies yet to occur,

including increases in minimum wages beyond the support of historical variations. Indeed,

even simple theoretical models predict highly nonlinear effects of minimum wages (e.g., Flinn

(2006); Gorry and Jackson (2017)).17 The synthetic decomposition method presented in this

paper is able to address such policy questions.

As foreshadowed in Section 3, our empirical illustration studies a (counterfactual) increase

in minimum wage in Texas beyond federally mandated levels and how it affects teenage em-

ployment. The focus on Texas, while an illustration, is of both academic and policy interest.

Texas is the largest state in the U.S. with minimum wages set at the federal level (constant since

2009). Raising the minimum wages has also been a policy of the 2022 Democratic gubernato-

rial candidate. We illustrate our method by investigating the effects of an increase in minimum

wages in Texas from US$7.25 to US$9.00, on teenage employment. We follow the structural

labor economics literature in basing such predictions on an equilibrium search and matching

model of labor markets (e.g., Flinn (2006); Flinn and Mullins (2015) and Ahn, Arcidiacono,

and Wessels (2011), in particular). However, in contrast to such papers, we construct a syn-

thetic comparison using other states beyond Texas where the policy has been observed (e.g.,

Oregon, Washington, etc.).

17This is best summarized by Neumark (2019) who writes in a recent review that, “even if one has a strong
view of what the U.S. literature says about the employment effects of past minimum wage increases, this may
provide much less guidance in projecting the consequences of much larger minimum wage increases than those
studied in the prior literature. Predicting the effects of minimum wage increases of many dollars, based on
research studying much smaller increases, is inherently risky for the usual statistical reasons. But the problem
is potentially exacerbated because the reduced form estimates on which the prior literature is based may fail to
capture changes in underlying behavior as high minimum wages affect a far greater share of workers.” (p.294)
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Our empirical application suits the synthetic decomposition method very well. There are

two main sources of heterogeneity across regions. First, the population characteristics differ.

For example, states are heterogeneous in workers’ education, age and skill, among others, all

of which may matter for the effects of minimum wages (Neumark (2019), and seen in the data

below). More importantly, the causal structure g0 for the source region could be very different

than those for other states, gk, even those from neighboring states. Intuitively, even if California

and other states had similar characteristics to Texas, they may have very different labor market

environments (e.g., state income taxation, different labor laws, etc.). In fact, Flinn (2002)

argues that structural parameters are estimated to be very different across submarkets. The

synthetic decomposition method respects such heterogeneity across regions. It assigns weights

to those source states to form the best comparison units in terms of their causal structures.

4.2. A Two-Sided Search Model of Labor Markets with Minimum Wages

We follow Ahn, Arcidiacono, and Wessels (2011) and consider the following static model of

two-sided matching between firms and workers. For each population k = 0, 1, ..., K , we let N k

be the total measure of the workers and J k the total measure of the firms in the population k.

Each worker-firm pair (i, j) is drawn, and then for each worker i, (Ri, Ki) is drawn, where Ri is

the reservation wage of worker i and Ki the cost of searching for the worker i. The worker-firm

pair is given the offer of matching with a contact rate λk > 0. The timing of the events for the

worker-firm pair given the offer of the match proceeds as follows.

(1) The worker decides to search for a match with a firm. Once the worker decides to

search, the worker pays the search cost Ki and receives an offer of match with a firm

j with probability λk > 0. If the worker decides not to search for a firm, the worker

receives zero payoff.

(2) The worker decides whether to accept the offer of the match or not. If the worker

rejects the offer of the match, the worker receives a reservation wage Ri. If the worker

accepts the offer, the worker-firm pair (i, j) jointly produces output Mi, j.

(3) Once the output Mi, j is realized the firm and the worker enter a Nash bargaining to

determine the wage, Wi, j, under the minimum wage constraint.

(4) After the wage Wi, j is determined, the firm decides whether to retain the worker or

not. If the firm retains the worker, the firm obtains the profit Mi, j−Wi, j and the worker

receives the wage Wi, j. If the firm does not retain the worker, the firm and the worker

receive the zero payoff.

(5) After these events are completed, the econometrician observes a random sample of the

workers, their employment status and wages, and their observed characteristics.
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To close the model, we need to state the equilibrium constraints. First, it is profitable for

worker i to accept the offer from the match with firm j if and only if

Ek[1{Mi, j ≥Wi, j}Wi, j | Ri, Ki]≥ Ri,(32)

where the conditional expectation Ek is with respect to the distribution in population k. Then,

it is profitable for the worker to search for a job if and only if

λkEk[max{1{Mi, j ≥Wi, j}Wi, j, Ri} | Ri, Ki]≥ Ki.

For the firm, it is profitable for it to retain the worker if and only if Yi, j ≥ Wi, j. Finally, we

assume that the contact rate λ is endogenously determined as a fixed point as follows:

λk =
Mk(λk, J k, N k)

ζk(λk)N k

,

where Mk(λk, J k, N k) denotes the matching technology, representing the total measure of

matched workers, and

ζk(λk) = P{λkEk[max{1{Mi, j ≥Wi, j}Wi, j, Ri} | Ri, Ki]≥ Ki},

i.e., the probability of the worker deciding to search for a firm. Hence, ζk(λk)N k represents

the total measure of workers searching for a match with a firm.

As for the wage determination through Nash bargaining, we follow Ahn, Arcidiacono, and

Wessels (2011) and obtain the following wage generation: for Mi, j ≥W k,

Wi, j =max{βkMi, j, Ri, W k},

where βk ∈ (0, 1) is a parameter that represents worker i’s bargaining strength. We also follow

Ahn, Arcidiacono, and Wessels (2011) in simplifying the procedure by assuming that (32) is

satisfied for all the workers such that Ri ≤ W k. Then the wage is generated only for those

workers with Ri ≤W k, and hence, the wage generation is simplified as follows: for Mi, j ≥W k,

Wi, j =max{βkMi, j, W k}.(33)

The employment indicator Yi, j ∈ {0,1} is also given as follows:

Yi, j = 1{Mi, j ≥Wi, j}= 1{Mi, j ≥W k},(34)

where the last equality follows from (33) and βk ∈ (0, 1).
Our counterfactual policy is to set the minimum wage to W Γ

k. We aim to predict the employ-

ment rate for population 0 (Texas) after the minimum wage changes to W Γ
k (US$9).
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To build up an empirical model, for population k, we specify the match output Mi, j as follows:

log Mi, j = X>i γk + Ui, j.

where X i denotes the observed characteristics of worker i, Ui, j represents a match component

that is not observed by the econometrician, and γk is a parameter vector. We assume that Ui, j ’s

are i.i.d., independent of (X i, Wi, j, W k), i ∈ Nk, and all firms j, and follow the distribution with

the CDF Fk. Unlike Ahn, Arcidiacono, and Wessels (2011), we leave Fk as nonparametrically

specified. Since we do not restrict Ui, j to have mean zero, we lose no generality by assuming

that the vector X i does not include an intercept term.

It follows from this parametrization and (34) that:

Yi, j = 1{Mi, j ≥W k}= 1{X>i γk + Ui, j ≥ log W k}.(35)

In order to check the applicability of the synthetic decomposition method, we consider the

support conditions required in this setting. First, we define our policy components

µk(X i, W k) = X>i γk − log W k, and

µΓk(X i, W k) = X>i γk − log W Γ
k.

We take

X Γ0 = {x ∈ X0 : x>γ0 − log W Γ
0 = x̃>γ0 − log W 0, for some x̃ ∈ X0},(36)

where we denote the support of X i in the target population by X0. The set X Γ0 represents the

set of characteristics for people who have a match for comparison after the policy. The support

conditions required can be summarized as follows.

(a) The support of X>i γ0− log W 0 and that of X>i γ0− log W Γ
0 overlap in the target population

(Assumption 2.1), so that the set X Γ0 is not empty.

(b) The support of X i in each source population k = 1, ..., K contains the set X0.

First, note that due to the independence between Ui, j ’s and X i ’s, the ARF mk(µ, x) does not

depend on the second argument, and we simply write mk(µ). In our case, the pre-policy and

post-policy ARFs take the following form:

mk(µk(X i)) =

∫

gk(µk(X i), u)dFk(u), and(37)

mk(µ
Γ
k(X i)) =

∫

gk(µ
Γ
k(X i), u)dFk(u),
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where

gk(µ, u) = 1{µ+ u≥ 0}.

For each worker i ∈ Nk, we let j(i) be the firm matched with this worker, and simply write

Yi = Yi, j(i) and Wi =Wi, j(i). Since (X i, W k) and Ui j are independent, we have

mk(µ) = Ek [Yi | µk(X i) = µ] .

Then, the synthetic prediction is obtained by taking the weights wk’s which minimize the L2-

distance between

m0(µ
Γ
0(x)) and

K
∑

k=1

mk(µ
Γ
k(x))wk,

over the set X Γ0 such that the intersection of the support of X>i γ0 − log W 0 and that of X>i γ0 −
log W Γ

0 when we restrict X i to X Γ0 is nonempty.

4.3. Empirical Implementation

We use the dataset from Allegretto, Dube, Reich, and Zipperer (2017) for our exercises,

which is drawn from the Current Population Survey (CPS), a repeated cross-section. Follow-

ing the authors, among many others, we focus on teenagers and use their individual-level

employment status as the outcome, Yi, j ∈ {0,1}, individual-level characteristics as X i (age,

sex, marriage status, whether they are Hispanic, whether they are black or another non-white

race). We further observe wages for an employed samples, Wi, j, and each state’s minimum

wages. Our sample is restricted from 2002 to 2014, so that it does not start during the 2001

recession (see Neumark and Wascher (2017) for a discussion).

The counterfactual sets the minimum wage in Texas (US$7.25 in 2014) to US$9 in 2014 (i.e.,

US$11.42 in 2022 dollars). Our parameter of interest, θ0 is the average teenage employment

in Texas in 2014 (for Texas’ 2014 population) had the minimum wage been US$9. We compare

this to teenage employment for those in Texas in 2014 with the prevailing minimum wage.

To make this comparison, we consider two sets of source regions. First, we use the states

with the highest prevailing minimum wages within our sample, which are California, Connecti-

cut, D.C. and Washington.18 We note that the support conditions (36) can include more states

because it is a condition on the support of the ARF and not on the policy itself. Hence, in a sec-

ond exercise, we further include Florida (a large state close to Texas), Louisiana (a neighboring

state) and Oregon (another state satisfying the first restriction). For illustration purposes, we

18Vermont also satisfies this restriction, but we drop it as its sample is too small to provide meaningful variation
for estimation of Vermont-specific parameters.
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TABLE 1. Summary Statistics for the Whole Sample (2002-2014)

CA CT DC FL LA OR TX WA

(Teenage) Employment 0.257 0.348 0.164 0.301 0.263 0.320 0.285 0.337
Wages (US$) 8.74 8.76 8.75 7.67 7.40 8.51 7.51 8.81

Age 17.48 17.37 17.47 17.44 17.39 17.43 17.42 17.39
Male 0.511 0.517 0.467 0.514 0.504 0.501 0.504 0.512

Married 0.014 0.005 0.003 0.010 0.007 0.015 0.021 0.010
Hispanic 0.463 0.147 0.124 0.240 0.035 0.130 0.471 0.124

Black 0.062 0.109 0.727 0.193 0.385 0.025 0.122 0.034

Share of Teenagers 0.075 0.073 0.049 0.062 0.077 0.065 0.077 0.069
in Population

Average State 8.11 6.51 7.60 6.44 6.28 7.80 6.18 7.00
Unemployment (%)

Notes: The table presents summary statistics for the variables used in the main specification. This includes the
labor market outcomes (employment and wages for the employed) and observable characteristics. Note that
these statistics are averaged over all years in the sample period (2002-2014), while our main comparison is to
Texas in 2014.

use a 10% random sample of the data for each region. This shows the performance of our

estimator with reasonably standard sample sizes.

Summary statistics are provided in Table 1, while the variation in minimum wages across

all source and target regions is shown in Figure 2. In terms of demographics (e.g., the share

of teenage Hispanics and African-Americans), Texas most resembles California. However, it is

more similar to Florida and Louisiana in terms of average teenage employment and in wages.

On the other hand, Louisiana’s minimum wage policies are very similar to Texas’, which may

provide less information on such changes.

We estimate the ARF’s for the model in two steps. First, we estimate γk using the pairwise

differencing method of Honoré and Powell (1994). Then, we plug them into µk(X i) and esti-

mate mk nonparametrically using a kernel regression estimation method and a cross-validated

bandwidth. Details are provided in the Supplemental Note. We use B = 200 bootstrap draws,
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FIGURE 2. The Variation in Minimum Wages Over Time Across Regions in Our
Sample

Notes: The panels depict the minimum wages during the sample periods (2002-2014) in some selected states
in the U.S.

set κ = 0.005 and α = 0.05. We draw a fine grid of w uniformly over its simplex, using a

procedure based on Rubin (1981).19

4.4. Results

Table 2 presents the results of the estimation. We present two specifications per exercise,

which only differ in whether they accommodate aggregate variables: the share of teenagers in

the state population and the average unemployment in the state.

19To construct each gridpoint, we first draw a vector of dimension K−1, where each element is drawn i.i.d. from
the uniform distribution with support [0, 1]. Then, we include 0 and 1 into that drawn vector, which is then
sorted. The grid point is the vector of differences across adjacent elements of w (which are all nonnegative and
must sum up to 1 by construction).



37

TABLE 2. Confidence Intervals for θ0: Predicted Average (Teenage) Employment in
Texas After a Counterfactual Minimum Wage Increase

Increase to US$9

θ0 0.195 0.186 0.192 0.186
[0.144, 0.253] [0.112, 0.265] [0.124, 0.265] [0.116, 0.261]

w0 =



















CA
C T
F L
DC
LA
OR
WA





































0.602
0
−

0.236
−
−

0.162





































0.647
0
−

0.246
−
−

0.107





































0.367
0

0.026
0.286

0
0

0.322





































0.381
0

0.216
0
0

0.305
0.098



















Teenage Employment in 0.292 0.292 0.292 0.292
Texas in 2014

Effect of Minimum Wage -9.72 p.p. -10.6 p.p. -10 p.p. -10.6 p.p.
Increase on Employment (or -33.3%) (or -36.3%) (or -34.2%) (or -36.2%)

Aggregate Variables Ø Ø

More Source Regions Ø Ø

Notes: The table presents the results from synthetic decomposition for increasing minimum wages in Texas
to US$9 on (teenage) employment in 2014. θ0 represents our parameter of interest, which is the predicted
average (teenage) employment after the policy, keeping the population in Texas in 2014 the same. This predic-
tion uses information from the target region (Texas) and source regions. We present its estimates across two
specifications: one using only individual-level covariates (age, sex, married, hispanic, black, other race), and
another which further includes aggregate variables (teen share in the state, average unemployment rate in the
state). We then use two different sets of source regions. The confidence interval for θ0 is presented in brackets.
For comparability, we also present the empirical average (pre-policy), and how the estimated θ0 translates to
changes in employment relative to the data (the baseline employment in Texas is 0.292). We also present esti-
mates for the weights, w0.

Our estimates suggest that an increase in the minimum wage decrease predicted average

(teenage) employment: our estimates of θ0 and all upper bounds of their associated confidence

intervals are all below the observed employment rate of 0.292. In particular, the counterfactual

employment is estimated between 0.186-0.195, implying a decrease in average (teenage) em-

ployment between 9-11 percentage points. This is robust across specifications and consistent

with the labor economics literature finding such negative effects (see Neumark (2019) for a
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review). In terms of magnitudes, it is also very similar to those found in Flinn (2006) with a

similar proportional increase in minimum wages from US$5 to US$6 – see his Figure 4.

Our synthetic comparison is predominantly based on California, D.C., Florida and Washing-

ton. This seems intuitive, as California best approximates the demographics of Texas. However,

our estimates also suggest that accounting for common shocks/aggregate variables is impor-

tant. Absent state-specific economic trends (here, the average teenage share in the popula-

tion and the average unemployment rate), we would have estimated the effects of minimum

wages on employment to be about 1 percentage point lower, thereby underestimating its neg-

ative effects. The aggregate variables also matter for the weights given to source regions:

because state-level variables change the model’s causal structure, as well as the characteristics

of those states, there is no reason why each region would remain equally comparable to Texas

with/without them. In fact, we find that California receives lower weights when including such

variables. This is because its state unemployment levels are much larger than Texas’s which,

in turn, is more similar to Washington’s.

5. Conclusion

In this paper, we propose a novel way to utilize data from other populations to generate coun-

terfactual predictions for a target population, when we do not have enough data for the latter.

We explore ways to utilize data from other populations (“source populations”), motivated by a

synthetic transferability condition. This hypothesis generalizes existing invariance conditions

for extrapolation of causal effects and allows us to build predictions based on a synthetic causal

structure, chosen to be as close as possible to the target ARF under a certain metric. Our ap-

proach is quite general and applies to various policy settings where the researcher may have

multiple source populations, regardless of how the reduced forms are originated structurally.

There are further extensions that one can explore from this research. First, it is possible that,

just like in synthetic control methods, using many source populations may cause overfitting. As

in synthetic control, a judicious selection of source populations based on the domain knowledge

of the context of application is important in practice. We believe that a decision-theoretic

guidance to help the researcher in this selection would be helpful, although to the best of

our knowledge, the predominant portion of the literature focuses on a decision setting under

a single population. Second, it would be useful to statistically gauge the plausibility of the

synthetic transferability condition. For this, we may need to sacrifice the generality of this

paper’s setting and make use of further restrictions on the ARF’s, such as continuity or shape

constraints of the ARFs, depending on the application of focus. Finally, the current paper has

assumed that the policy is known to the researcher. However, in practice, the precise form of



39

the policy may be unknown. The researcher may face a range of policies under consideration,

or may not have precise knowledge of how the policy alters the reduced form, and may need

to estimate it using additional data. This question seems relevant in practice.
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SUPPLEMENTAL NOTE TO “SYNTHETIC DECOMPOSITION FOR

COUNTERFACTUAL PREDICTIONS”

Nathan Canen and Kyungchul Song

University of Houston and University of British Columbia

The supplemental note provides the proof of asymptotic validity of inference proposed in

Canen and Song (2023), and some details on the Monte Carlo simulations and empirical ap-

plication.

A. Uniform Asymptotic Validity

A.1. Assumptions and Results

Let us first introduce conditions that ensure uniform asymptotic validity of the confidence

intervals, C1−α, defined in (31). Let P be the space of probability distributions that satisfy

Assumptions A.1-A.5 below. From here on, we make explicit the dependence of w0, θ (w0),
and Ω on P ∈ P by rewriting them as wP , θP(wP) and ΩP . Similarly we write HP and hP

instead of H and h, and write µk,P , µΓk,P and mk,P instead of µk, µΓk, and mk.

The nonstandard aspect of uniform asymptotic validity in our setting comes from the fact

that
p

n0(ŵ−wP) exhibits discontinuity in its pointwise asymptotic distribution. Hence, our

proof focuses on dealing with this aspect, using high level conditions for other aspects that can

be handled using standard arguments.

Assumption A.1. For each k = 0, 1, ..., K , there exists a constant rk > 0 such that nk/n0→ rk,

as nk, n0→∞.

Assumption A.1 says that the sample size from each source population is not asymptotically

negligible relative to the sample size from the target population.

Assumption A.2. For each k = 0, 1, ..., K , there exists δ > 0 such that

sup
P∈P

EP

�

|mk,P(µk,P(X i), X i)|4+δ
�

<∞ and sup
P∈P

EP

�

|mk,P(µ
Γ
k,P(X i), X i)|4+δ

�

<∞.

Assumption A.2 requires that the ARFs have a moment bounded uniformly over P ∈ P.

Assumption A.3. There exists η > 0 such that for all n≥ 1,

inf
P∈P
λmin(HP)> η,

where λmin(HP) denotes the smallest eigenvalue of HP .
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Assumption A.3 requires that the matrix HP has eigenvalues bounded away from zero uni-

formly over P ∈ P and over n ≥ 1. The assumption excludes a setting where wP is weakly

identified. Later we will discuss how this assumption can be relaxed.

Recall the definition Wi = (Yi, X>i )
>. For each k = 0, 1, ..., K , let us define

qk,0,P(Wi) = mk,P(µ
Γ
k,P(X i), X i)1{X i ∈ X Γ0 } and

q̂k,0(Wi) = m̂k(µ̂
Γ
k(X i), X i)1{X i ∈ X̂ Γ0 }.

Similarly, we define qk,1,P(Wi) and q̂k,1(Wi) to be the same as qk,0,P(Wi) and q̂k,0(Wi) except that

1{X i ∈ X Γ0 } and 1{X i ∈ X̂ Γ0 } are replaced by 1{X i /∈ X Γ0 } and 1{X i /∈ X̂ Γ0 } respectively. The

following assumption requires the asymptotic linear representation of the estimated ARFs.

For any sequence of random vectors Zn0
and Wn0

in Rd , n0 ≥ 1, we denote

Zn0
=Wn0

+ oP(1),

if for each ε > 0,

limsup
n0→∞

sup
P∈P

P
�

‖Zn0
−Wn0

‖> ε
	

= 0.

Assumption A.4. Suppose that for each k = 0,1, ..., K , ` = 0,1, ϕk,`,P(·) is equal to qk,`,P(·) or

a constant function at one. Then, for each j, k = 0, 1, ..., K , `= 0, 1, as n0→∞,

1
p

n0

∑

i∈N0

�

q̂ j,`(Wi)− q j,`,P(Wi)
�

ϕk,`,P(Wi) =
1
p

n j

∑

i∈N j

ψ j,`,P(Wi;ϕk,`,P) + oP(1),

1
p

n0

∑

i∈N0

�

q̂ j,`(Wi)− q j,`,P(Wi)
� �

q̂k,`(Wi)− qk,`,P(Wi)
�

= oP(1),

where ψ j,`,P(Wi;ϕk,`,P) is a mean zero random variable such that for some δ > 0,

sup
P∈P

EP

�

|ψ j,`,P(Wi;ϕk,`,P)|4+δ
�

<∞,

for all k = 0,1, ..., K and `= 0,1.

Note that the estimation error in q̂ j,`(·) comes from the sample in region j, whereas the

summation is over the sample in region 0. The influence function is driven by the randomness

in the estimation error q̂ j,`(·)− q j,`,P(·). Similarly, we make the following assumption for the

bootstrap version of the estimators.

Assumption A.5. Suppose that for each k = 0,1, ..., K , ` = 0, 1, (ϕ̂k,`(·),ϕk,`,P(·)) is equal to

(q̂k,`(·), qk,`,P(·)) or a pair of constant functions at one. Then, for each j, k = 0,1, ..., K , `= 0,1,

the following statements hold.
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(i) As n0→∞,

1
p

n0

∑

i∈N0

�

q̂∗j,`(W
∗
i )− q̂ j,`(W

∗
i )
�

ϕ̂k,`(W
∗
i ) =

1
p

n j

∑

i∈N j

ψ̂ j,`,P(W
∗
i ;ϕk,`,P) + oP(1),

1
p

n0

∑

i∈N0

�

q̂∗j,`(W
∗
i )− q̂ j,`(W

∗
i )
��

q̂∗k,`(W
∗
i )− q̂k,`(W

∗
i )
�

= oP(1),

where

ψ̂ j,`,P(W
∗
i ;ϕk,`,P) =ψ j,`,P(W

∗
i ;ϕk,`,P)−

1
n j

∑

i∈N j

ψ j,`,P(Wi;ϕk,`,P),

and ψ j,`,P(·;ϕk,`,P) is the influence function in Assumption A.4.

(ii) As n0→∞,

1
p

n0

∑

i∈N0

�

q̂ j,`(W
∗
i )− q̂ j,`(Wi)

� �

q̂k,`(W
∗
i )− qk,`,P(W

∗
i )
�

= oP(1),

1
p

n0

∑

i∈N0

�

q̂ j,`(W
∗
i )− q̂ j,`(Wi)

� �

q̂k,`(Wi)− qk,`,P(Wi)
�

= oP(1), and

1
p

n0

∑

i∈N0

�

q̂∗j,`(W
∗
i )q̂

∗
k,`(W

∗
i )− q j,`,P(Wi)qk,`,P(Wi)

�

= oP(1).

Define

Ωn,P =
1
n0

∑

i∈N

EP

�

ψ̃i,Pψ̃
>
i,P

�

,(A.1)

where ψ̃i,P = Ψi,PwP −ψi,P and Ψi,P and ψi,P are defined in Lemma A.7 below. Inspection of

Ωn,P shows that it depends on n only through nk/n0, k = 1, ..., K , and depends on the ratios

continuously. Let ΩP be the same as Ωn,P with nk/n0 replaced by rk, for k = 1, ..., K , where rk’s

are positive constants in Assumption A.1. Then, it is not hard to see that from Assumption A.2,

sup
P∈P





Ωn,P −ΩP





→ 0,(A.2)

as n0→∞.

The following theorem shows that the estimators ŵ and θ̂ (ŵ) are
p

n0-consistent for wP and

θP(wP) uniformly over P ∈ P.

Theorem A.1. Suppose that Assumptions A.1-A.5 hold and that infP∈P λmin(ΩP)> 0. Then,

lim
M↑∞

lim sup
n0→∞

sup
P∈P

P
�
p

n0 ‖ŵ−wP‖> M
	

= 0.
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However, as noted earlier, depending on the sequence of probabilities in P,
p

n0(ŵ −wP)
can be asymptotically non-normal, and so can

p
n0(θ̂ (ŵ) − θP(wP)) as a consequence. Nev-

ertheless, the confidence interval C1−α we propose in the main text turns out to be uniformly

asymptotically valid as the following theorem shows.

Theorem A.2. Suppose that Assumptions A.1-A.5 hold. Then, for each α ∈ (0, 1),

lim inf
n0→∞

inf
P∈P

P {θP(wP) ∈ C1−α} ≥ 1−α.

The proofs of these results are presented in the next section.

A.2. Proofs

A.2.1. Preliminary Results. We begin with auxiliary results on the rejection probability of a

test involving the squared residual from projecting an asymptotically normal random vector

onto a polyhedral cone. The main preliminary result is Lemma A.6. This is the result we use

later to establish the uniform asymptotic validity of the confidence set for wP .

First, for any matrix m× K matrix A, we consider a polyhedral cone of the following type:

Λ(A) =
�

x ∈ RK : Ax≤ 0
	

.

When A is replaced by

A(w) = [IK ,w,−w]>,(A.3)

with w ∈ ∆K−1, where IK is the K-dimensional identity matrix, we write Λ(w) simply, instead

of Λ(A(w)). Let K = {1, ..., K}. For each J ⊂ K , let

ΛJ(w) =
�

x ∈ RK : xJ = 0,x−J ≤ 0, and w>x= 0
	

and

LJ(w) =
�

x ∈ RK : xJ = 0 and w>x= 0
	

.

(An inequality between vectors are understood as holding element-wise. We also assume that

any inequality or equality that involves a vector xJ with J = ∅ is vacuously true.) Note that

LJ(w) is the span of ΛJ(w). The relative interior of ΛJ(w) (relative to LJ(w)) is given by

ri(ΛJ(w)) =
�

x ∈ RK : xJ = 0,x−J < 0, and w>x= 0
	

.(A.4)

For any vector x, we denote [x] j to mean its j-th entry. For any vector x ∈ RK , we let

J0(x) = { j ∈ K : [x] j = 0}.

Given a symmetric positive definite matrix Ω, we define the norm ‖ · ‖Ω as ‖x‖Ω =
p

x′Ω−1x,

and the projection ΠΩ(y | Λ(w)) (along the norm ‖ · ‖Ω) to be the solution to the following



48

minimization problem:

inf
x∈Λ(w)

‖y− x‖2
Ω
.(A.5)

Since Ω is positive definite and Λ(w) is closed and convex, the projection ΠΩ(y | Λ(w)) exists

and is unique. The following lemma shows how the projection along ‖ · ‖Ω is translated into

that along ‖ · ‖.

Lemma A.1. For any J ⊂ K and x ∈ Λ(w) with any w ∈∆K−1, the following holds.
(i) x ∈ ri(ΛJ(w)) if and only if J0(x) = J.
(ii) If ri(ΛJ(w)) 6=∅ for some J ⊂ K, then, J 6=∅ and K \ J ⊂ J0(w), and

ri(ΛJ(w)) =
�

x ∈ RK : xJ = 0,x−J < 0
	

.(A.6)

(iii) For any y ∈ RK , J0(ΠΩ(y | Λ(w))) 6=∅.

Proof: (i) The result follows from the fact that ri(ΛJ(w)), J ⊂ K , partition Λ(w).
(ii) For the first statement, suppose to the contrary that J = ∅. Then, since w ∈ ∆K−1,

ri(ΛJ(w)) =∅. Hence we must have J 6=∅. As for the second statement, suppose that K \ J 6⊂
J0(w) so that there exists j ∈ K \J , with [w] j > 0. Then, for such J , none of x ∈ ΛJ(w) satisfies

both x−J < 0, and w>x = 0, because w ≥ 0, and hence, ri(ΛJ(w)) = ∅. Hence the second

statement holds.

Now, we turn to the third statement. Suppose that J = K . Then, ri(ΛJ(w)) = ΛJ(w) = {0}.
Hence (A.6) follows. Suppose that K \ J 6= ∅. Since K \ J ⊂ J0(w) by the previous result,

K \ J0(w) ⊂ J . Then, for any x ∈ RK such that xJ = 0, the condition w>x = 0 in (A.4) holds.

Again, (A.6) follows.

(iii) Since Λ(w) is closed and convex, ΠΩ(y | Λ(w)) exists in Λ(w) and is unique. Since

ri(ΛJ(w))’s partition Λ(w), there exists a unique J∗ ⊂ K such that ΠΩ(y | Λ(w)) ∈ ri(ΛJ∗(w)).
Hence, ri(ΛJ∗(w)) 6= ∅. By the previous results (i) and (ii), we must have J∗ = J0(ΠΩ(y |
Λ(w))), and J∗ 6=∅. �

Lemma A.2. For any m× K matrix A, and any symmetric positive definite K × K matrix Ω,

ΠΩ(y | Λ(A)) = Ω1/2ΠI(Ω
−1/2y | Ω−1/2Λ(A)).

Proof: Note that

ΠΩ(y | Λ(A)) = arg min
x:Ax≤0

(y− x)>Ω−1(y− x)

= Ω1/2 arg min
x:AΩ1/2x≤0

(Ω−1/2y− x)>(Ω−1/2y− x).

The last term is equal to Ω1/2ΠI(Ω−1/2y | Λ(AΩ1/2)) = Ω1/2ΠI(Ω−1/2y | Ω−1/2Λ(A)). �
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Lemma A.3. Suppose that Y ∈ RK is a random vector following N(0,Ω), with a symmetric positive
definite matrix Ω. Then, for any α ∈ (0,1) and w ∈∆K−1,

P
�

‖Y −ΠΩ(Y | Λ(w))‖
2
Ω
> c1−α(Y ;w,Ω)

	

≤ α,

where c1−α(Y ;w,Ω) = G−1 (1−α; |J0(ΠΩ(Y | Λ(w)))|), and G(·; k) is the CDF of theχ2-distribution
with degree of freedom equal to k.

Proof: Let F`, `= 1, ..., L, be the faces of the polyhedral cone Λ(w), and let ri(F`) be the rela-

tive interior of F`. Then, by Theorem 1 of Mohamad, van Zwet, Cator, and Goeman (2020),20

we have

P
�

‖Y −ΠΩ(Y | Λ(w))‖
2
Ω
> q1−α(Y ;w,Ω)

	

≤ α,

where

q1−α(Y ;w,Ω) =
L
∑

`=1

1{ΠΩ(Y | Λ(w)) ∈ ri(F`)}G−1 (1−α; K − rk(P`)) ,(A.7)

and F`’s are faces of Λ(w), P` denotes the projection matrix (along ‖ · ‖Ω) onto the linear span

of F`, and rk(P`) denotes the rank of P`. It suffices to show that

q1−α(Y ;w,Ω) = c1−α(Y ;w,Ω).

In our case with the polyhedral cone Λ(w), the faces and their relative interiors are given

by ΛJ(w) and ri(ΛJ(w)), J ⊂ K (see, e.g., the proof of Lemma 3.13.5 of Silvapulle and Sen

(2005)). Furthermore, by Lemma A.1(ii), ΠΩ(Y | Λ(w)) ∈ ri(ΛJ(w)) implies that J 6= ∅ and

K \ J ⊂ J0(w). Hence, we can rewrite q1−α(Y ;w,Ω) as
∑

J⊂K:J 6=∅,K\J 6=∅

1{K \ J ⊂ J0(w)}1{ΠΩ(Y | Λ(w)) ∈ ri(ΛJ(w))}G−1 (1−α; K − rk(PJ))(A.8)

+ 1{ΠΩ(Y | Λ(w)) ∈ ri(ΛK(w))}G
−1
�

1−α; K − rk(PK)
�

,

where PJ is the projection matrix onto the linear span of ΛJ(w).
Since ri(ΛK(w)) = {0}, and PK is a zero matrix, the last term in (A.8) is equal to

1{ΠΩ(Y | Λ(w)) = 0}G−1 (1−α; K) .

We focus on the first sum in (A.8). The linear span of ΛJ(w) is given by LJ(w). However,

for any nonempty J such that K \ J ⊂ J0(w), the span is reduced to
�

x ∈ RK : xJ = 0
	

, and

rk(PJ) = K − |J |. Therefore, K − rk(PJ) = |J | in (A.8). As seen in the proof of Lemma A.1(iii),

20They apply Lemma 3.13.2 of Silvapulle and Sen (2005), p.125, which uses the orthogonal decomposition of
RK equipped with the inner product 〈a,b〉 = a′b. However, the lemma continues to hold with any other inner
product, with the definition of projections and orthogonal complements appropriately redefined.
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there exists a unique J∗ ⊂ K such that ΠΩ(Y | Λ(w)) ∈ ri(ΛJ∗(w)) and J∗ = J0(ΠΩ(Y | Λ(w))),
which implies that K \ J∗ ⊂ J0(w). Hence, from (A.8),

q1−α(Y ;w,Ω) = 1{K \ J0(ΠΩ(Y | Λ(w))) 6=∅}G−1 (1−α; |J0(ΠΩ(Y | Λ(w)))|)

+ 1{J0(ΠΩ(Y | Λ(w))) = K}G−1 (1−α; K)

= G−1 (1−α; |J0(ΠΩ(Y | Λ(w)))|) = c1−α(Y ;w,Ω).

This gives the desired result. �

Lemma A.4. Let Y ∈ RK be a random vector following N(0,Ω) for a symmetric positive definite
matrix Ω. Then, for any α ∈ (0,1) and w ∈∆K−1,

P
�

‖Y −ΠΩ(Y | Λ(w))‖
2
Ω
≥ c1−α(Y ;w,Ω)

	

≤ α,

where c1−α(Y ;w,Ω) is as defined in Lemma A.3.

Proof: In light of Lemma A.3, it suffices to show that

P
�

‖Y −ΠΩ(Y | Λ(w))‖
2
Ω
= c1−α(Y ;w,Ω)

	

= 0.

The probability on the left hand side is equal to
K
∑

k=1

P
�

‖Y −ΠΩ(Y | Λ(w))‖
2
Ω
= G−1 (1−α; k) and |J0(ΠΩ(Y | Λ(w)))|= k

	

.

Note that the summation excludes k = 0 by Lemma A.1(iii). It suffices to show that

P{‖Y −ΠΩ(Y | Λ(w))‖
2
Ω
= c}= 0,(A.9)

for any constant c ≥ 0.

First, we write

‖Y −ΠΩ(Y | Λ(w))‖
2
Ω
=
∑

J⊂K

‖Y −ΠΩ(Y | Λ(w))‖
2
Ω

1 {ΠΩ(Y | Λ(w)) ∈ ri(ΛJ(w))}

=
∑

J⊂K

‖Y −ΠΩ(Y | LJ(w))‖
2
Ω

1 {ΠΩ(Y | Λ(w)) ∈ ri(ΛJ(w))}

=
∑

J⊂K

‖Y −ΠΩ(Y | LJ(w))‖
2
Ω

1 {J0(ΠΩ(Y | Λ(w))) = J}1{K \ J ⊂ J0(w)}.

The second equality follows by Lemma 3.13.2 of Silvapulle and Sen (2005). The last equality

follows by Lemma A.1. By (iii) of Lemma A.1, the last sum is equal to
∑

J⊂K:J 6=∅

‖Y −ΠΩ(Y | LJ(w))‖
2
Ω

1 {J0(ΠΩ(Y | Λ(w))) = J}1{K \ J ⊂ J0(w)}.
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Since the events {J0(ΠΩ(Y | Λ(w))) = J}, J ⊂ K , are disjoint across J ⊂ K , it suffices to show

that ‖Y −ΠΩ(Y | LJ(w))‖
2
Ω

is a continuous random variable for all nonempty J ⊂ K . We let

QJ(w) = [[Ω
1/2]>J ,Ω1/2w]>,

where [Ω1/2]J denotes the J × K matrix of which each row corresponds to the j-th row vector

of Ω1/2, j ∈ J . Then, by Lemma A.2,

ΠΩ(Y | LJ(w)) = Ω
1/2ΠI(Ω

−1/2Y | LΩJ (w)),

where LΩJ (w) = {x : QJ(w)x = 0}, which is the linear span of {x : A(w)Ω1/2x ≤ 0}, with A(w)
defined in (A.3).

Now,

‖Y −ΠΩ(Y | LJ(w))‖
2
Ω
=
�

Ω−1/2Y −Ω−1/2ΠΩ(Y | LJ(w))
�> �
Ω−1/2Y −Ω−1/2ΠΩ(Y | LJ(w))

�

=
�

Ω−1/2Y −ΠI(Ω
−1/2Y | LΩJ (w))

�> �
Ω−1/2Y −ΠI(Ω

−1/2Y | LΩJ (w))
�

=
�

Ω−1/2Y
�′

MΩ
J (w)

�

Ω−1/2Y
�

,

where MΩ
J (w) is a K×K symmetric idempotent matrix of rank equal to K−dim(LΩJ (w)). When

J = K , LΩJ (w) = {0}, and hence dim(LΩJ (w)) = 0. Suppose that J is such that |J | = K − 1.

Then, all but one entries of Ω1/2x in LΩJ (w) are zero. If this nonzero entry appears in the j-th
entry of Ω1/2x, the requirement K \ J ⊂ J0(w) yields that w j = 0. Therefore, dim(LΩJ (w)) = 1.

Similarly, if J is such that 0 < |J | < K − 1, dim(LΩJ (w)) = K − |J | (under the condition that

K \ J ⊂ J0(w)). Hence, for any nonempty J ⊂ K such that K \ J ⊂ J0(w), we have

K − dim(LΩJ (w)) = |J |.

This means that ‖Y −ΠΩ(Y | LJ(w))‖
2
Ω

follows the χ2-distribution with degree of freedom

equal to |J |. Since J 6=∅, ‖Y −ΠΩ(Y | LJ(w))‖
2
Ω

is a continuous random variable. �

Lemma A.5. Suppose that Ωn is a sequence of symmetric positive definite K × K matrices such
that Ωn→ Ω0, as n→∞, for a symmetric positive definite matrix Ω0. Suppose also that yn ∈ RK

and wn ∈ ∆K−1 are sequences of vectors such that yn → y0, as n→∞, for some y0 ∈ RK . Then,
the following statements hold.

(i) limn→∞





ΠΩn
(yn | Λ(wn))−ΠΩ0

(y0 | Λ(wn))




= 0.
(ii) limn→∞

�

�

�

�J0

�

ΠΩn
(yn | Λ(wn))

��

�−
�

�J0

�

ΠΩ0
(y0 | Λ(wn))

��

�

�

�= 0.

Proof: (i) Note that




ΠΩn
(yn | Λ(wn))−ΠΩ0

(y0 | Λ(wn))




≤ An,1 + An,2,(A.10)
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where

An,1 =




ΠΩn
(yn | Λ(wn))−ΠΩn

(y0 | Λ(wn))




 , and

An,2 =




ΠΩn
(y0 | Λ(wn))−ΠΩ0

(y0 | Λ(wn))




 .

Since a projection map in a Hilbert space on a closed convex set is a contraction map (see, e.g.

Theorem 3 of Cheney and Goldstein (1959)),

An,1 ≤ ‖yn − y0‖Ωn
.

Since Ωn→ Ω0 and Ω0 is positive definite, the above bound vanishes as n→∞.

Let us turn to An,2. Due to the contractive property of the projection map, and since 0 ∈
Λ(wn), and Ωn→ Ω0, we have





ΠΩn
(y0 | Λ(wn))







Ωn
=




ΠΩn
(y0 | Λ(wn))−ΠΩn

(0 | Λ(wn))






Ωn

≤ ‖y0‖Ωn
→ ‖y0‖Ω0

,

as n →∞. Hence, there exists a fixed bounded, closed, convex set B ⊂ RK which depends

only on y0 and Ω0 such that for all n≥ 1, Λ(wn)∩ B 6=∅ and

inf
x∈Λ(wn)

‖y0 − x‖2
Ωn
= inf

x∈Λ(wn)∩B
‖y0 − x‖2

Ωn
and

inf
x∈Λ(wn)

‖y0 − x‖2
Ω0
= inf

x∈Λ(wn)∩B
‖y0 − x‖2

Ω0
.

Furthermore, note that
�

�

�

�

inf
x∈Λ(wn)∩B

‖y0 − x‖2
Ωn
− inf

x∈Λ(wn)∩B
‖y0 − x‖2

Ω0

�

�

�

�

≤
�

�

�

�

inf
x∈Λ(wn)∩B

�

‖y0 − x‖2
Ωn
− ‖y0 − x‖2

Ω0
+ ‖y0 − x‖2

Ω0
− inf

x̃∈Λ(wn)∩B
‖y0 − x̃‖2

Ω0

�

�

�

�

�

.

The last term is bounded by

sup
x∈Λ(wn)∩B

�

�(y0 − x)>(Ω−1
n −Ω

−1
0 )(y0 − x)

�

�→ 0,

as n→∞. Since Λ(wn)∩ B is a closed convex set, the projection of y0 onto Λ(wn)∩ B along

‖ · ‖Ωn
exists and is unique. Hence, we find that

lim
n→∞

An,2 = 0.

(ii) By the result of (i), as n→∞,

ΠΩn
(yn | Λ(wn))−ΠΩ0

(y0 | Λ(wn))→ 0.(A.11)
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Recall that the relative interiors ri(ΛJ(w)), J ⊂ K , partition Λ(w). For any subsequence of {n},
we choose a further subsequence {n′} and J , J ′ ⊂ K such that for all n′ in the subsequence, we

have

ΠΩn′
(yn′ | Λ(wn′)) ∈ ri(ΛJ(wn′)), and

ΠΩ0
(y0 | Λ(wn′)) ∈ ri(ΛJ ′(wn′)).

Since ri(ΛJ(wn′)) and ri(ΛJ ′(wn′)) are nonempty, by Lemma A.1, we have

ri(ΛJ(wn′)) = {x ∈ RK : xJ = 0,x−J < 0},(A.12)

and similarly with ri(ΛJ ′(wn′)). Hence both the relative interiors do not depend on wn′ or n′.
Furthermore, from this, we have

J0(ΠΩn′
(yn′ | Λ(wn′))) = J and J0(ΠΩ0

(y0 | Λ(wn′))) = J ′.

Now, by (A.11) and (A.12), we find that from large n′ on, we have

ΠΩn′
(yn′ | Λ(wn′)) ∈ ri(ΛJ ′(wn′)).

Since the relative interiors ri(ΛJ(wn′)), J ⊂ K , partition Λ(wn′), we find that J = J ′ from some

large n′ on. �

Lemma A.6. Suppose that Yn ∈ RK , n ≥ 1, is a sequence of random vectors, and wn ∈ ∆K−1

is a sequence of nonstochastic vectors, such that Yn →d Y , where Y follows N(0,Ω0) for some
symmetric positive definite matrix Ω0. Furthermore, let Ωn be a sequence of symmetric positive
definite random matrices such that Ωn→P Ω0, as n→∞.

Then, for any α ∈ (0, 1),

limsup
n→∞

P
¦




Yn −ΠΩn
(Yn | Λ(wn))







2

Ωn
> c1−α(Yn;wn,Ωn)

©

≤ α,

where c1−α(Yn;wn,Ωn) = G−1
�

1−α; |J0(ΠΩn
(Yn | Λ(wn)))|

�

.

Proof: Due to the almost sure representation theorem (cf. Theorem 6.7 of Billingsley (1999),

p.70), there is a common probability space on which we have a sequence of random vectors

Ỹn and random matrices Ω̃n such that

[Ỹ>n , vec(Ω̃n)
>]>→a.s [Ỹ

>, vec(Ω̃)>]>,

as n→∞, where Ỹn and Ω̃n have the same distribution as Yn and Ωn, and Ỹ and Ω̃0 have the

same distribution as Y and Ω0.

By Lemma A.5(i), we have




Ỹn −ΠΩ̃n
(Ỹn | Λ(wn))







2

Ω̃n
−




Ỹ −ΠΩ̃0
(Ỹ | Λ(wn))







2

Ω̃0
→a.s 0,
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as n→∞.

Let us turn to the critical values. By Lemma A.5(ii), we have

lim
n→∞

�

�

�

�J0

�

ΠΩ̃n
(Ỹn | Λ(wn))

��

�−
�

�J0

�

ΠΩ̃0
(Ỹ | Λ(wn))

��

�

�

�= 0.

Hence,

c1−α(Ỹn;wn, Ω̃n) = G−1
�

1−α; |J0(ΠΩ̃n
(Ỹn | Λ(wn)))|

�

= G−1
�

1−α; |J0(ΠΩ̃0
(Ỹ | Λ(wn)))|

�

+ oa.s.(1)≡ c1−α(Ỹ ;wn, Ω̃0) + oa.s.(1),

as n→∞. Thus, we find that




Ỹn −ΠΩ̃n
(Ỹn | Λ(wn))







2

Ω̃n
− c1−α(Ỹn;wn, Ω̃n)

−
�

‖Ỹ −ΠΩ̃0
(Ỹ | Λ(wn))‖2

Ω̃0
− c1−α(Ỹ ;wn, Ω̃0)

�

→a.s. 0,

as n→∞. Now, observe that

P
¦




Ỹn −ΠΩ̃n
(Ỹn | Λ(wn))







2

Ω̃n
− c1−α(Ỹn;wn, Ω̃n)> 0

©

≤ P
¦




Ỹn −ΠΩ̃n
(Ỹn | Λ(wn))







2

Ω̃n
− c1−α(Ỹn;wn, Ω̃n)≥ 0

©

= P
¦




Ỹ −ΠΩ̃0
(Ỹ | Λ(wn))







2

Ω̃0
− c1−α(Ỹ ;wn, Ω̃0) + oa.s.(1)≥ 0

©

≤ P
¦




Ỹ −ΠΩ̃0
(Ỹ | Λ(wn))







2

Ω̃0
− c1−α(Ỹ ;wn, Ω̃0)≥ 0

©

+ o(1)≤ α+ o(1),

as n→∞. The second inequality follows by reversed Fatou’s Lemma and from the fact that

the map 1{· ≥ 0} is upper semicontinuous. The last inequality follows by Lemma A.4. �

A.2.2. The Proof of the Main Results. Throughout the proofs below, we assume that Assump-

tions A.1-A.5 are satisfied. Define

ĜP =
p

n0(Ĥ −HP) and ĝP =
p

n0(ĥ− hP).

The following lemma gives an asymptotic linear presentation for ĜP and ĝP .

Lemma A.7. As n0→∞,

ĜP =
1
p

n0

∑

i∈N

Ψi,P + oP(1), and ĝP =
1
p

n0

∑

i∈N

ψi,P + oP(1),

where Ψi,P is the K × K matrix whose ( j, k)-entry is given by

ψi,P, jk =
√

√n0

n j
ψ j,0,P(Wi; qk,0,P)1{i ∈ N j}+

√

√n0

nk
ψk,0,P(Wi; q j,0,P)1{i ∈ Nk}

+
�

q j,0,P(Wi)qk,0,P(Wi)− EP

�

q j,0,P(Wi)qk,0,P(Wi)
�	

1{i ∈ N0},
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and ψi,P is the K × 1 vector whose k-th entry is given by

ψi,P,k =
√

√n0

nk
ψk,0,P(Wi; q0,0,P)1{i ∈ Nk}+ψ0,0,P(Wi; q0,0,P)1{i ∈ N0}

+
�

qk,0,P(Wi)q0,0,P(Wi)− EP

�

qk,0,P(Wi)q0,0,P(Wi)
�	

1{i ∈ N0}.

Proof: For j, k = 1, ..., K , let Ĥ jk be the ( j, k)-th entry of Ĥ and HP, jk the ( j, k)-th entry of HP .

As for the first statement, for each j, k = 1, ..., K , we write

p

n0(Ĥ jk −HP, jk) =
1
p

n0

∑

i∈N0

(q̂ j,0(Wi)− q j,0,P(Wi))q̂k,0(Wi)

+
1
p

n0

∑

i∈N0

(q̂k,0(Wi)− qk,0,P(Wi))q j,0,P(Wi)

+
1
p

n0

∑

i∈N0

�

q j,0,P(Wi)qk,0,P(Wi)− EP

�

q j,0,P(Wi)qk,0,P(Wi)
�	

.

By Assumption A.4, we find that

p

n0(Ĥ jk −HP, jk) =
√

√n0

n j

∑

i∈N j

ψ j,0,P(Wi; qk,0,P) +
√

√n0

nk

∑

i∈Nk

ψk,0,P(Wi; q j,0,P)

+
1
p

n0

∑

i∈N0

�

q j,0,P(Wi)qk,0,P(Wi)− EP

�

q j,0,P(Wi)qk,0,P(Wi)
�	

+ oP(1).

The proof for the second statement is similar and is omitted. �

Lemma A.8. As n0→∞, Ĥ = HP + oP(1) and ĥ= hP + oP(1).

Proof: Since supP∈P EP

�




Ψi,P







2
�

<∞ and supP∈P EP

�




ψi,P







2
�

<∞, the result is immediate

from Lemma A.7. �

For each w ∈ RK , we define

M̂(w) =
�

w− Ĥ−1ĥ
�>

Ĥ
�

w− Ĥ−1ĥ
�

, and

MP(w) =
�

w−H−1
P hP

�>
HP

�

w−H−1
P hP

�

.

Lemma A.9. As n0→∞, ŵ=wP + oP(1).

Proof: First, we prove the following two claims.

(i) For each ε > 0,

lim
n0→∞

sup
P∈P

P

�

sup
w∈∆K−1

|M̂(w)−MP(w)|> ε
�

= 0.
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(ii) For each ε > 0,

lim inf
n0→∞

inf
P∈P

inf
w∈∆K−1\B(wP :ε)

{MP(w)−MP(wP)}> 0,

where B(wP;ε) = {w ∈∆K−1 : ‖w−wP‖< ε}.
Once we have (i) and (ii), we follow the arguments in the proof of Theorem 2.1 of Newey

and McFadden (1994) to complete the proof. More specifically, we invoke (ii) and take ε > 0,

ηε > 0 and nε such that for all n≥ nε,

inf
P∈P

inf
w∈∆K−1\B(wP :ε)

{MP(w)−MP(wP)}> ηε.

The event of ‖ŵ−wP‖> ε implies MP(ŵ)−MP(wP)> ηε, or

M̂(wP)−MP(wP)> M̂(ŵ)−MP(ŵ) +ηε,

where we use that M̂(ŵ)≤ M̂(wP). The probability of this event is bounded by

sup
P∈P

P

�

2 sup
w∈∆K−1

|M̂(w)−MP(w)|> ηε

�

→ 0,

as n→∞, by (i). Since the last convergence is uniform in P ∈ P, we obtain the desired result

of the lemma.

Let us prove (i) first. For each w ∈∆K−1, we write

M̂(w)−MP(w) =w>(Ĥ −HP)w− 2(ĥ− hP)
>w+ ĥ>Ĥ−1ĥ− h>P H−1

P hP .

The desired result of (i) follows by Lemma A.8 and Assumption A.3.

Let us turn to (ii). Note that

MP(w)−MP(wP) = (w−wP)
>HP(w−wP) + 2(w−wP)

>HP(wP −H−1
P hP)(A.13)

≥ inf
P∈P
λmin(HP)‖w−wP‖2,

because (w−wP)>HP(wP − H−1
P hP) ≥ 0 for all w ∈ ∆K−1 by the definition of wP . (See, e.g.,

Propositions 2.1.5 and 2.3.2 of Clarke (1990).) The desired result follows from Assumption

A.3. �

Define

Ĝ∗ =
p

n0(Ĥ
∗ − Ĥ) and ĝ∗ =

p

n0(ĥ
∗ − ĥ).

Lemma A.10. As n0→∞,

Ĝ∗ =
1
p

n0

∑

i∈N

Ψ∗i,P + oP(1) and ĝ∗P =
1
p

n0

∑

i∈N

ψ∗i,P + oP(1),
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where Ψ∗i,P is the K × K matrix whose ( j, k)-entry is given by

ψ∗i,P, jk =
√

√n0

n j
ψ̂ j,0,P(W

∗
i ; qk,0,P)1{i ∈ N j}+

√

√n0

nk
ψ̂k,0,P(W

∗
i ; q j,0,P)1{i ∈ Nk}

+

(

q j,0,P(W
∗
i )qk,0,P(W

∗
i )−

1
n0

∑

i∈N0

q j,0,P(Wi)qk,0,P(Wi)

)

1{i ∈ N0},

and ψ∗i,P is the K × 1 vector whose k-th entry is given by

ψ∗i,P,k =
√

√n0

nk
ψ̂k,0,P(W

∗
i ; q0,0,P)1{i ∈ Nk}+ ψ̂0,0,P(W

∗
i ; q0,0,P)1{i ∈ N0}

+

(

qk,0,P(W
∗
i )q0,0,P(W

∗
i )−

1
n0

∑

i∈N0

qk,0,P(Wi)q0,0,P(Wi)

)

1{i ∈ N0}.

Proof: The proof is similar to that of Lemma A.7. Since the arguments are standard, we

provide a sketch of the proof of the first statement only for brevity. Let Ĥ∗jk be the ( j, k)-th
entry of Ĥ∗. We write

p

n0(Ĥ
∗
jk − Ĥ jk) = An,1 + An,2,

where

An,1 =
1
p

n0

∑

i∈N0

(q̂∗j,0(W
∗
i )− q̂ j,0(W

∗
i ))q̂

∗
k,0(W

∗
i ) +

1
p

n0

∑

i∈N0

(q̂∗k,0(W
∗
i )− q̂k,0(W

∗
i ))q̂ j,0(W

∗
i ), and

An,2 =
1
p

n0

∑

i∈N0

(

q̂ j,0(W
∗
i )q̂k,0(W

∗
i )−

1
n0

∑

i∈N0

q̂ j,0(Wi)q̂k,0(Wi)

)

.

From Assumptions A.4-A.5, we can show that

An,1 =
√

√n0

n j

∑

i∈N

ψ̂ j,0,P(W
∗
i ; qk,0,P)1{i ∈ N j}+

√

√n0

nk

∑

i∈N

ψ̂k,0,P(W
∗
i ; q j,0,P)1{i ∈ Nk}+ oP(1).

By Assumption A.5(ii),

An,2 =
1
p

n0

∑

i∈N0

(

q j,0,P(W
∗
i )qk,0,P(W

∗
i )−

1
n0

∑

i∈N0

q j,0,P(Wi)qk,0,P(Wi)

)

+ oP(1).

Thus, we obtain the desired result. �

Recall the definition of Ωn,P in (A.1). We construct its bootstrap version. Define

ψ̃
∗
i,P = Ψ

∗
i,PwP −ψ

∗
i,P ,
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where Ψ∗i,P and ψ∗i,P are defined in Lemma A.10. We let

Ω̃n,P =
1
n0

∑

i∈N

E
�

ψ̃
∗
i,Pn
ψ̃
∗>
i,P | Fn

�

,

where Fn denotes the σ-field generated by (Wi)i∈N .

Lemma A.11. Suppose that Nn = {1, ..., n} is partitioned as

Nn =
K
⋃

k=0

Nn, j,

where we denote nk,n = |Nn, j|, k = 0, 1, ..., K, and nk,n/n0,n → rk for the constant rk > 0 in
Assumption A.1, and nk,n denotes the sample size in the region k. Then, the following statements
hold for any sequence of probabilities Pn ∈ P.

(i) As n→∞,

sup
t∈R

�

�

�

�

�

Pn

(

Ω
−1/2
n,Pn

1
p

n0,n

∑

i∈Nn

ψ̃i,Pn
≤ t

)

−Φ(t)

�

�

�

�

�

→ 0,

where Φ is the CDF of N(0, 1).
(ii) For any ε > 0, as n→∞,

Pn

(

sup
t∈R

�

�

�

�

�

Pn

(

Ω̃
−1/2
n,Pn

1
p

n0,n

∑

i∈Nn

ψ̃
∗
i,Pn
≤ t | Fn

)

−Φ(t)

�

�

�

�

�

> ε

)

→ 0.

Proof: Both results follow from standard arguments involving the Central Limit Theorem and

its bootstrap version for a sum of independent random variables. (See Chapter 3 of Shao and

Tu (1995).) �

Lemma A.12. As n0→∞, Ω̂= Ωn,P + oP(1).

Proof: It suffices to show that as n0→∞,

Ωn,P = Ω̃n,P + oP(1) and Ω̂= Ω̃n,P + oP(1).

The first statement is easy to show. For brevity, we focus on showing the second statement. We

write Ω̂n instead of Ω̂ to make the sample size explicit. We choose a subsequence {n′} of {n}
such that for Pn′ ∈ P,

lim inf
n0→∞

sup
P∈P

P
�

‖Ω̂n − Ω̃n,P‖> ε
	

= lim inf
n′→∞

Pn′
�

‖Ω̂n′ − Ω̃n′,P‖> ε
	

.

Then, there exists a further subsequence {n′′} of {n′} such that

lim inf
n′→∞

Pn′
�

‖Ω̂n′ − Ω̃n′,P‖> ε
	

= lim
n′′→∞

Pn′′
�

‖Ω̂n′′ − Ω̃n′′,P‖> ε
	

.
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Recall that τ̂k =
p

n0 max
��

�

�

Ĥŵ− ĥ
�

k

�

� , c0

	

. Thus, from Lemma A.7, we have

lim
M→∞

lim inf
n′′→∞

Pn′′ {‖τ̂‖> M}= 0.(A.14)

Since E
�

|γ̃∗k|
2+δ | Fn

�

≤ τ̂2+δ
k for any k = 1, ..., K and for any δ > 0,

lim
M→∞

lim inf
n′′→∞

Pn′′
�

E
�

‖γ̃∗‖2+δ | Fn′′
�

> M
	

= 0.

Hence, for each k,`= 1, ..., K , and ε > 0,

lim
M→∞

lim inf
n′′→∞

Pn′′
�

E
�

|γ̃∗kγ̃
∗
`
|1{|γ̃∗kγ̃

∗
`
|> M} | Fn′′

�

> ε
	

≤ lim
M→∞

lim inf
n′′→∞

Pn′′
�

E
�

|γ̃∗kγ̃
∗
`
|1+δ | Fn′′

�

> εMδ
	

= 0.

Therefore, E
�

‖γ̃∗‖2+δ | Fn′′
�

is asymptotically uniformly integrable uniformly over P ∈ P. From

Lemma A.11, we have along the subsequence Pn′′ ,

Ω̃
−1/2
n′′,Pn′′

�

1
B

B
∑

b=1

γ̃∗bγ̃
∗>
b

�

Ω̃
−1/2
n′′,Pn′′

= Ω̃−1/2
n′′,Pn′′

E
�

γ̃∗bγ̃
∗>
b |Fn′′

�

Ω̃
−1/2
n′′,Pn′′

+ oP(1),

as B→∞ and then n′′→∞. Furthermore, from (A.14),

Ω̃
−1/2
n′′,Pn′′

E
�

γ̃∗bγ̃
∗>
b |Fn′′

�

Ω̃
−1/2
n′′,Pn′′

= Ω̃−1/2
n′′,Pn′′

E
�

ψ̃
∗
i,Pn′′
ψ̃
∗>
i,Pn′′
|Fn′′

�

Ω̃
−1/2
n′′,Pn′′

+ oP(1).

From the arguments in the proof of Theorem 2.20 of van der Vaart (1998), we find that

Ω̃
−1/2
n′′,Pn′′

�

1
B

B
∑

b=1

γ̃∗bγ̃
∗′
b

�

Ω̃
−1/2
n′′,Pn′′

→P IK ,

as n′′→∞. �

Lemma A.13. For any κ ∈ (0,1), we have

lim inf
n0→∞

inf
P∈P

P
�

wP ∈ C̃1−κ

	

≥ 1− κ.

Proof: For any subsequence of {n0}, we choose a further subsequence in Lemma A.11. Then,

we apply Lemma A.6 on the subsequence, with

Yn = ĜPn
wPn
− ĝPn

,

and Y = Ω1/2
P Z, and with Ωn and Ω in the lemma replaced by Ω̂n and ΩP . Then, since Yn→d Y

and Ω̂n→P ΩP by Lemmas A.11 and A.12 and (A.2), we obtain the desired result. �

Lemma A.14. As n0→∞,

sup
w∈∆K−1

�

�

�

�

�

p

n0

�

θ̂ (w)− θP(w)
�

−
K
∑

k=1

wk
1
p

n0

∑

i∈N

ψθk,P(Wi)

�

�

�

�

�

= oP(1),
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where

ψθk,P(Wi) =
�

ψ0,0,P(Wi; 1) + q0,0,P(Wi)− EP

�

q0,0,P(Wi)
��

1{i ∈ N0}

+
�

qk,1,P(Wi)− EP

�

qk,1,P(Wi)
��

1{i ∈ N0}+
√

√n0

nk
ψk,1,P(Wi; 1)1{i ∈ Nk}.

Proof: We write
p

n0

�

θ̂ (w)− θP(w)
�

=
1
p

n0

∑

i∈N0

�

q̂0,0(Wi)− q0,0,P(Wi)
�

+
1
p

n0

∑

i∈N0

�

q0,0,P(Wi)− EP

�

q0,0,P(Wi)
��

+
1
p

n0

K
∑

k=1

wk

∑

i∈N0

�

q̂k,1(Wi)− qk,1,P(Wi) + qk,1,P(Wi)− EP

�

qk,1,P(Wi)
�	

.

By Assumption A.4 and by the fact that
∑K

k=1 wk = 1, we find

p

n0

�

θ̂ (w)− θP(w)
�

=
1
p

n0

∑

i∈N0

ψ0,0,P(Wi; 1) +
1
p

n0

∑

i∈N0

�

q0,0,P(Wi)− EP

�

q0,0,P(Wi)
��

+
K
∑

k=1

wk
1
p

n0

∑

i∈N0

�

qk,1,P(Wi)− EP

�

qk,1,P(Wi)
��

+
K
∑

k=1

wk

∑

i∈Nk

√

√n0

nk

�

ψk,1,P(Wi; 1) + qk,1,P(Wi)− EP

�

qk,1,P(Wi)
�	

+ oP(1)

=
K
∑

k=1

wk
1
p

n0

∑

i∈N

ψθk,P(Wi) + oP(1).

We obtain the desired result. �

Define

σ2 =
K
∑

k=1

w2
k

1
n0

∑

i∈N

E
h
�

ψθk,P(Wi)
�2i

.

Lemma A.15. As n0→∞,

sup
P∈P

sup
t∈R

�

�

�

�

�

P

¨p
n0

�

θ̂ (wP)− θP(wP)
�

σ
≤ t

«

−Φ(t)

�

�

�

�

�

→ 0,

where Φ is the CDF of N(0, 1).

Proof: The result follows from Lemma A.14 and the Central Limit Theorem for independent

random variables. �

Lemma A.16. As n0→∞, σ̂ = σ+ oP(1).
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Proof: The result follows from the uniform asymptotic normality of the bootstrap version
p

n0

�

θ̂ ∗(ŵ)− θ̂ (ŵ)
�

. The arguments are standard and omitted. �

Lemma A.17. (i) For any ε > 0, there exists M > 0 such that

limsup
n0→∞

sup
P∈P

P

�

sup
w∈∆K−1

�

�M̂(w)−MP(w)
�

�> Mn−1/2
0

�

< ε.

(ii) For any ε > 0, there exists M > 0 such that for any sequence δn→ 0 as n→∞,

limsup
n0→∞

sup
P∈P

P

�

sup
w∈∆K−1:‖w−wP‖≤δn

�

�M̂∆(w)− M̂∆(wP)
�

�> Mδnn−1/2
0

�

< ε.

Proof: (i) First, we write

M̂(w)−MP(w) =w>(Ĥ −HP)w− 2(ĥ− hP)
>w+ ĥ′Ĥ−1ĥ− h′P H−1

P hP .

Since the weights are from the simplex ∆K−1 that is a bounded set, the desired result follows

from Lemma A.7 and the Central Limit Theorem.

(ii) We write

M̂∆(w)− M̂∆(wP) = (w−wP)
>(Ĥ −HP)(w−wP) + 2w′P(Ĥ −HP)(w−wP)

− 2(ĥ− hP)
>(w−wP),

where M̂∆(w) = M̂(w) −MP(w). Similarly as before, from Lemma A.10, the desired result

immediately follows. �

Lemma A.18. Suppose that for some positive sequence δn,1 such that limn→∞δn,1 = 0, we have

lim
M↑∞

limsup
n0→∞

sup
P∈P

P
�

‖ŵ−wP‖> Mδn,1

	

= 0.

Then,

lim
M↑∞

limsup
n0→∞

sup
P∈P

P
�

‖ŵ−wP‖2 > Mn−1/2
0 δn,1

	

= 0.

Proof: We take arbitrary ε > 0 and large Mε > 0 such that

limsup
n0→∞

sup
P∈P

P
�

‖ŵ−wP‖> Mεδn,1

	

≤ ε.(A.15)

Recall the definition M̂∆(w) = M̂(w)−MP(w). Since M̂(wP)≥ M̂(ŵ), we have

M̂∆(wP)− M̂∆(ŵ)≥MP(ŵ)−MP(wP)(A.16)

≥ inf
P∈P
λmin(HP)‖ŵ−wP‖2 ≥ η‖ŵ−wP‖2,
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from (A.13), where η > 0 is the constant in Assumption A.3. Define the event

En(ε) =
�

‖ŵ−wP‖> Mεδn,1

	

.

By Lemma A.17(ii), for any ε1 > 0, there exists M > 0 such that

lim sup
n0→∞

sup
P∈P

P
�

|M̂∆(wP)− M̂∆(ŵ)|> Mn−1/2
0 Mεδn,1

	

∩ Ec
n(ε)≤ ε1.

Therefore, from (A.16),

lim inf
n0→∞

inf
P∈P

P
�

η‖ŵ−wP‖2 ≤ Mn−1/2
0 Mεδn,1

	

≥ 1− ε1 − ε.

Since the choice of ε1 and ε is arbitrary, the desired result follows. �

Proof of Theorem A.1: By Lemma A.9, there exists a sequence δn,1→ 0 such that

lim
M↑∞

limsup
n0→∞

sup
P∈P

P
�

‖ŵ−wP‖> Mδn,1

	

= 0.(A.17)

By Lemma A.18, we find that the above result holds for δn,1 = n−1/4
0 . Now, we use mathematical

induction. Suppose that (A.17) holds with δn,1 such that

log(δn,1) = log(n0)
�

−
1
4
−

1
8
− ...−

1
2m

�

,

for some m≥ 2. Then, with this choice of δn,1, we apply Lemma A.18 again to find that (A.17)

holds with δn,1 such that

log(δn,1) = log(n0)
�

−
1
4
−

1
8
− ...−

1
2m+1

�

.

Hence, we find that (A.17) holds with δn,1 such that

log(δn,1) = log(n0)

�

−
∞
∑

m=2

1
2m

�

= −
1
2

log(n0).

This gives the desired result. �

Proof of Theorem A.2 : Note that

P {θP(wP) /∈ C1−α}= P

(

inf
w∈C̃1−κ

�p
n0(θ̂ (w)− θP(wP))

σ̂

�2

> c1−α+κ(1)

)

≤ P

(

�p
n0(θ̂ (wP)− θP(wP))

σ̂

�2

> c1−α+κ(1)

)

+ P
�

wP /∈ C̃1−κ

	

.

The desired result follows by Lemmas A.15, A.16 and A.13. �
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A.3. When H is Not Necessarily Invertible

Let us discuss the case where H is not necessarily invertible. In this case, we show how we

can still obtain uniformly valid confidence intervals for θ0. First, we provide a modification of

the method to accommodate this setting, and then present the uniform validity result.

We begin by noting that we can rewrite

ρ2
P(w) =w>HPw+ 2w>hP .

We define

WP = arg min
w∈∆K−1

ρ2
P(w).

Let us explain how we construct the confidence interval for θ0(w0) for a fixed w0 ∈ ∆K−1.

We first define

θ̂ (w) =
1
n0

∑

i∈N0

m̂0

�

µ̂Γ0(X i), X i

�

1{X i ∈ X̂ Γ0 }+
1
n0

∑

i∈N0

m̂syn (X i;w)1{X i ∈ X0 \ X̂ Γ0 },(A.18)

where

m̂syn (x;w) =
K
∑

k=1

mk

�

µ̂Γk(x), x
�

wk.

As in (27), we construct

T ′(w) = n0 inf
λ∈Λ(w)

�

f̂(w)−λ
�>
Ω̂−1(w)

�

f̂(w)−λ
�

,(A.19)

where Ω̂(w) is constructed as in (29) with w replacing ŵ. Then, the confidence set for w0 is

given by

C̃ ′1−κ =
�

w ∈∆K−1 : T ′(w)≤ ĉ1−κ(w)
	

,(A.20)

where ĉ1−κ(w) denotes the 1−κ percentile of the χ2 distribution with degree of freedom equal

to the number of zero entries in λ̂(w).
We let

T ∗(w) =
p

n0

�

θ̂ ∗(w)− θ̂ (w)
�

.

We read the 0.75 quantile and 0.25 quantile of the bootstrap distribution of {T ∗(w) : b =
1, ..., B}, and denote them to be q̂0.75(w) and q̂0.25(w), respectively. Define

σ̂(w) =
q̂0.75(w)− q̂0.25(w)

z0.75 − z0.25
,

where z0.75 and z0.25 are the 0.75- and 0.25-quantiles of N(0,1).
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Define

T̂ ′(w,θ ) =
p

n0(θ̂ (w)− θ )
σ̂(w)

.

We construct the (1−α)-level confidence interval using the Bonferroni approach as follows:

C ′1−α =

�

θ ∈ Θ : inf
w∈C̃1−κ

�

T̂ ′(w,θ )
�2
≤ c1−α+κ(1)

�

,(A.21)

where κ > 0 is a small constant, such as κ= 0.005, c1−α+κ(1) denotes the (1−α+κ)-quantile

of the χ2(1) distribution. By modifying the arguments in the proof of Theorem A.2, we can

show that

lim inf
n0→∞

inf
P∈P

inf
w0∈WP

P {θP(w0) ∈ C1−α} ≥ 1−α.

Equipped with Lemma A.6, we can show this using standard arguments. We omit the details.

B. Further Details on Monte Carlo Simulations and Empirical Ap-
plications

B.1. Details on the Monte Carlo Simulations

In our simulations, there is an outcome Yi which is a function of a single-dimensional policy

variable X i and an unobserved random variable Ui. We draw Ui ∼ N(0,σ2), i.i.d. and indepen-

dently from X i. We allow for one target region (region 0), three source regions (k = 1,2, 3),

with all regions having the same sample size n0 ∈ {500,1000}.
For the policy experiment, we draw µΓk(X i) i.i.d. Uniform[0,1] for all source regions (i.e.,

the post-policy variable). However, for the target region, we assume that we only observe

pre-policy X i drawn i.i.d. Uniform[1− s, 1]. The policy of interest is the map

µΓ0(X i) = X i/s− (1− s).

Hence, the post-policy distribution of µΓ0(X i) in the target region is Uniform[0,1] and s mea-

sures the overlap of the support of X i in the target region relative to the source regions. When

s = 1, no information from source regions is necessary: the target parameter θ0 is fully identi-

fied and estimable from the target region alone. When s is very close to 0, then the post-policy

ARF for the target region is not identified for X i > 0 and identification of θ0 almost solely relies

on information from source regions.

We consider two separate specifications for Average Response Functions, which we refer to

as (i) “Linear” and (ii) “Non-Linear” (in X i). They differ in specifying linear versus non-linear

specifications for the ARF’s, as well as in having boundary versus interior values for w∗ (the
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weights satisfying the synthetic transferability condition). This allows us to verify our inference

in all of these theoretically and empirically relevant cases.

The Linear Specification specifies the following causal structures for the outcome, Yi:

Yi =























X i + Ui, if k = 1

0.5X i − 1+ Ui, if k = 2

0.3X i + 1+ Ui, if k = 3

0.4X i + Ui, if k = 0,

(B.1)

while the Non-Linear Specification is:

Yi =























X i + Ui, if k = 1

X 2
i − 1+ Ui, if k = 2

X 3
i − 3X i + Ui, if k = 3

0.2X 3
i + 0.4X 2

i − 0.2X i − 0.4+ Ui, if k = 0.

(B.2)

Our target parameter for the Linear Specification is given by θ0 = 0.2, while it is θ0 = −0.317

for the Non-Linear Specification. It follows that, for the Linear Specification, w0 = (0, 0.5,0.5),
while for the Non-Linear case, w0 = (0.4, 0.4,0.2).

We estimate the ARF’s for each region by Ordinary Least Squares with covariates in region

k given by

X̃ k
i = [1, X i, X 2

i , X 3
i ]
>.

Estimation of Ĥ, ĥ and ŵ follows those in equations (21) above. We then estimate θ̂ (ŵ) as in

equation (22) which, in our set-up, is given by:

θ̂ (ŵ) =
1
n0

∑

i∈N0

m̂0(µ̂
Γ (X i))1{X i ∈ [1− s, 1]}

+
1
n0

∑

i∈N0

m̂syn (X i; ŵ)1{X i ∈ [0, 1− s]},

where

m̂syn (x; ŵ) =
K
∑

k=1

m̃k(µ̂
Γ
k(x))ŵk.

We consider the Bonferroni-based Confidence Interval (CI), denoted C1−α in equation (31)

in the main text. Finally, we set α= 0.05 to be the significance level, σ = 0.5, κ= 0.005, R=
1000 simulations and B = 999 bootstrap draws. The results are shown below and described

in the main text.
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TABLE 3. The Empirical Coverage Probability and Average Length of Confidence Inter-
vals for θ0 at 95% Nominal Level.

Coverage Probability
Linear Specification Non-Linear Specification

n0 = 500 s = 0.5 0.942 1
s = 0.9 0.991 0.987

n0 = 1000 s = 0.5 0.935 0.955
s = 0.9 0.988 0.979

Average Length of CI
Linear Specification Non-Linear Specification

n0 = 500 s = 0.5 0.178 0.356
s = 0.9 0.118 0.112

n0 = 1000 s = 0.5 0.155 0.311
s = 0.9 0.084 0.072

Notes: The first panel of the table reports the empirical coverage probability of the confidence interval for
θ0 computed with the two different procedures and the two different specifications described in the main
text, while the second panel reports its average length. The inference procedure uses the Bonferroni-based
confidence interval which computes a confidence set for w0 in a first-step. Simulation number is R = 1000,
with B = 999 bootstrap repetitions, with κ= 0.005.

TABLE 4. Finite Sample Properties of ŵ, θ̂ (ŵ) at 95% Nominal Level.

Linear Specification
RMSE(ŵ) RMSE(θ̂ (ŵ)) Bias(θ̂ (ŵ)) Var(θ̂ (ŵ))

n0 = 500 s = 0.5 0.414 0.044 -0.021 0.002
s = 0.9 0.306 0.024 -0.001 0.001

n0 = 1000 s = 0.5 0.356 0.032 -0.015 0.001
s = 0.9 0.265 0.017 -0.002 0.000

Non-Linear Specification
RMSE(ŵ) RMSE(θ̂ (ŵ)) Bias(θ̂ (ŵ)) Var(θ̂ (ŵ))

n0 = 500 s = 0.5 0.355 0.051 -0.001 0.003
s = 0.9 0.243 0.024 0.001 0.001

n0 = 1000 s = 0.5 0.305 0.037 -0.002 0.001
s = 0.9 0.207 0.017 -0.001 0.000

Notes: The table reports the Root Mean Square Error (RMSE) across simulations for our estimators ŵ and
θ̂ (ŵ) described in our main text, as well as the bias of θ̂ (ŵ) and the variance of θ̂ (ŵ) across simulations.

B.2. Details on Empirical Application: Estimation for the ARFs

In this section, we explain the estimation of mk(µk(X i)) and mk(µΓk(X i)) used in our empirical

application. As for estimation, we use the equilibrium wage generation in (33) so that for each
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i ∈ Nk, we have

log Wi =max{logβk + X>i γk + Ui, j, log W k}.

We estimate γk using the pairwise difference estimation method of Honoré and Powell (1994).

(Note that βk is not identified in this semiparametric setting.) More specifically, we first define

s(y1, y2,δ) =







y2
1 − (y2 +δ)y1, if δ ≤ −y2

(y1 − y2 −δ)2, if − y2 < δ < y1

(−y2)2 − (δ− y1)(−y2), if δ ≥ y1.

For each k = 0, 1, ..., K , we let γ̂k be the estimator obtained as a solution to the following

optimization problem:

min
γ

1
nK(nK − 1)

∑

i∈NK

∑

j∈NK : j>i

s
�

log Wi − log W k, log Wj − log W k, (X i − X j)
>γ
�

.

From this, we obtain γ̂k.

Then we define

µ̂k(X i) = X ′i γ̂k − log W k and µ̂Γk(X i) = X ′i γ̂k − log W Γ
k,

and construct

m̂k(µ) =

∑

`∈NK , 6̀=i Kh(µ− µ̂k(X`))Yi
∑

`∈NK , 6̀=i Kh(µ− µ̂k(X`))
,

where Kh(x) = K(x/h)/h and K is a univariate kernel. In particular, we use a quartic kernel

and choose h by cross-validation. We obtain the estimators of mk(µk(X i)) and mk(µΓk(X i)) as

follows:

m̂k(µ̂k(X i)) and m̂k(µ̂
Γ
k(X i)).

Once the ARFs are estimated, we can proceed to construct a synthetic prediction after the

minimum wage changes as described in the main text.
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