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Abstract

I propose a simple theory of strategic network formation that accounts for many

empirical patterns. The theory consists of three key parts: i) convex linking costs,

ii) local linking benefits, and iii) swap-proofness, a refinement of pairwise stability.

An acyclic preference condition—the mutual favoritie property—implies that a unique

swap-proof stable graph generically exists. If players agree about who is a more desir-

able neighbor, then stability robustly begets homophily and clustering. With similar

assumptions on players’ desire for links, stable graphs take on structures—strong hier-

archies or ordered overlapping cliques—that mirror real networks in different domains.

I discuss several extensions, the relationship to matching, and a dynamic foundation

for swap-proof stability.
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1 Introduction

From friendships to coauthors to trading relationships and beyond, networks display

striking regularities. Among the most reliable patterns are clustering, homophily, and the

“small-worlds” property. One’s neighbors are often neighbors of each other, one’s neighbors

are similar to oneself on multiple dimensions, and typical distances between two individuals

are small relatitve to population size.1 Often, networks also feature status hierarchies, though

details differ across domains. Financial and trade networks display a tiered, core-periphery

structure, in which larger firms or countries are much better connected than small ones

(Soramaki et al., 2007; Craig and von Peter, 2014; Akerman and Seim, 2014). In contrast,

social networks within small to medium peer groups (e.g., in workplaces and schools) break

into separate cliques with a clear status ranking (Homans, 1950; Adler and Adler, 1995; Gest

et al., 2007). What accounts for these recurring observations?

I propose a simple theory of strategic network formation that yields sharp predictions

consistent with these patterns. The theory combines three key ingredients: i) increasing

marginal costs of linking, ii) linking benefits that depend (only) on the two players’ charac-

teristics, and iii) a refinement of pairwise stability. A network formation game comprises a

finite set of players with payoffs that depend on a graph that forms amongst them. In a pair-

wise stable graph, no player benefits from unilaterally severing a link, and no pair benefits

from jointly forming a link. Swap-proofness asks for a minimal refinement: when evaluating

an addition, each player in the pair may simultaneously sever one link. Despite a large

multiplicity of pairwise stable graphs, swap-proofness generically selects a unique outcome.

1For instance, Barabási and Albert (2002) document that coauthorship networks across different academic
fields exhibit far higher clustering coefficients than similarly dense random graphs, and Ugander et al. (2011)
and Myers et al. (2014) show that many online social networks are also highly clustered. See McPherson et al.
(2001) for a comprehensive review of evidence on homophily. Milgram (1967) demonstrated that seemingly
distant people are often connected through relatively short network paths, coining the term “six degrees of
separation.” More recently, Dodds et al. (2003) and Backstrom et al. (2012) have replicated this famous
experiment—if anything, distances are now shorter.
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Homophily and clustering emerge as robust features of swap-proof stable graphs. Moreover,

under different assumptions on link benefits, these graphs mirror both the hierarchies seen

in trade networks and the ranked cliques seen in peer groups.

Beyond these qualitative predictions, the analysis helps organize our broader understand-

ing of strategic incentives and network formation. Despite being nearly three decades old,

this literature contains few results that characterize pairwise stable graphs in large classes

of games. Moreover, the results we do have often depend on knife-edge properties.2 This

testifies to the difficulty of determining stable structures outside of the simplest examples.

Following Sadler and Golub (2022), I focus on ordinal properties of players’ payoffs, deriving

results that do not rely on symmetry or any particular functional forms. This rewards us with

simple—and more importantly, interpretable—conditions that ensure existence, uniqueness,

and meaningful restrictions on the graphs that emerge.

For transparency, I focus on a restricted class of games with additively separable linking

benefits—in the online Appendix, I identify more primitive payoff properties under which the

analysis carries through. Each neighbor delivers a benefit that depends on the two players’

types, and players incur linking costs that are increasing and convex in their degrees. A

simple example illustrates an unnatural multiplicity of pairwise stable outcomes, motivating

our refinement. Because swap-proof stable graphs need not exist in general, our next step is

to identify conditions under which they do. This brings us to the paper’s first contribution:

the mutual favorite property.

Given a set of possible links E, I say ij ∈ E is a mutual favorite if i prefers j as a neighbor

over all k such that ik ∈ E, and j prefers i as a neighbor over all ` such that j` ∈ E. The

2In their seminal paper, Jackson and Wolinsky (1996) analyze two simple examples, the “connections
model” and the “coauthor model.” Subsequent work largely follows this approach, working out specific
models rather than sytematically studying the relationship between payoffs and stable graphs. Some more
recent work has started in this direction, though results typically depend on players having symmetric payoffs,
which precludes any ex-ante heterogeneity that is independent of the network that forms. I discuss this in
more detail under “Related Work.”
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mutual favorite property holds if every set E contains a mutual favorite. This property

helps ensure existence because it rules out cycles of improving swaps. Several classes of

games satisfy this condition—for instance, if players share a common ranking of potential

neighbors, or if linking benefits are symmetric. Together with no indifferences, the mutual

favorite property guarantees that a unique swap-proof stable graph exists.

I next study stable network structures using ordinal payoff properties. Player i is more

desirable than player j if every other player gains more from a link with i than from a link

with j. If this yields a total order on the set of players, then our existence result applies, and

stable graphs have predictable features. Players limit their connections due to increasing

marginal costs, so those who are most desirable quickly run through their budgets linking

amongst each other, and we get a dense core at the top of the ranking. If the graph contains

multiple components, each contains its own clustered core comprising its most attractive

members. Moreover, a bound on player degrees translates into a bound on the distance

between any linked pair in the common preference ranking: players assortatively match

with those who are similarly ranked.3 Note, however, that this result does not preclude

core-periphery graphs, which often display negative assortativity—core vertices have high

degrees in these graphs, and with a large degree bound, the distance between two neighbors

in the rank order can become large. Nevertheless, the distance bound does not depend on

the total number of players, so assortativity grows more pronounced in large populations.4

A common ranking of potential partners induces a natural status hierarchy, but the pre-

cise structures that emerge depend on how a player’s attractiveness as a neighbor relates

to her desire for links. If more attractive players also want more links, then stable graphs

are strong hierarchies. In a strong hierarchy, a player i who ranks above j has (weakly)

3Although the degree of any player is endogenous, we can readily construct bounds. If the marginal cost
of link K + 1 is higher than the maximum possible benefit, no player can have more than K neighbors in a
stable graph.

4This broadly agrees with empirical findings. For instance, Currarini et al. (2010) document that racial
homophily in high school friendship networks is greater in larger high schools.
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more neighbors than j, and these neighbors rank (weakly) higher than those of j. Strong

hierarchies include the more familiar nested split graphs, a rigid structure in which neigh-

borhoods are ordered by set inclusion.5 In line with previous studies, nested split graphs

appear if marginal costs are constant, but with increasing marginal costs, those at the top

may find it prohibitively expensive to maintain so many links. In contrast, if more attractive

players want fewer links, then stable graphs consist of ordered overlapping cliques: every

player’s neighborhood is an interval in the common rank order, with endpoints increasing in

a player’s own position. Although this agrees with earlier work assuming constant marginal

costs (Sadler and Golub, 2022), we arrive through a different path. With constant marginal

costs, all pairwise stable graphs consist of ordered overlapping cliques, but with increasing

marginal costs, refinement via swap-proofness is crucial. Note that both of these character-

izations are tight: any graph that is a strong hierarchy or ordered overlapping cliques can

arise as the unique stable graph in an appropriate game.

These results not only replicate key features of real networks, they also pinpoint why

particular structures appear. Prior work explains patterns in financial and trade networks as

a consequence of complementarities—core-periphery structures emerge because large entities

are more attractive partners, and they benefit more from additional links (König et al.,

2014; Sadler and Golub, 2022). Our findings highlight an important implicit assumption:

marginal linking costs are essentially constant. Moreover, to the extent this assumption fails

in practice, we gain some insight into how real trading networks might differ from these stark

predictions. At the boundary between our two cases, we find another pattern commonly seen

in peer groups. If more attractive players desire neither more nor fewer links, then stable

graphs partition the players into separate cliques, with more attractive players in larger

groups.6 Familiar schoolyard dynamics derive from a common desire for connection together

5In a nested split graph, if i ranks above j, then every neighbor of j is a neighbor of i.
6This is the only structure that is both a strong hierarchy and consists of ordered overlapping cliques.
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with an agreed ranking of who is a desirable friend.

Implicit in our solution concept is that players choose precisely with whom they link,

selecting among all others in the group. Particularly in large communities, opportunities to

interact are typically more limited than this. To expand the applicability of our analysis

to such settings, Section 5 introduces a hybrid model, augmenting our game with a set of

feasible links that constrains network formation. In practice, feasible links might result from

random meetings, geographic proximity, or in some cases, design choices. In contrast with

random graphs or search models, players here actively select which links to form, given their

constraints. Importantly, the existence and uniqueness result still applies, enabling a new

approach for studying strategic network formation in larger populations.

Another potential concern in applications is that key results could fail with a little bit of

noise in players’ preferences. To address this, Section 6 highlights a model in which linking

benefits include a noise term that is idiosyncratic to each pair. I show that the mutual

favorite property still holds in this setting, ensuring a unique stable graph. Not only does

this offer hope that we can estimate linking preferences from network data, it can also help

stable graphs better match features of real networks. A small bound on player degrees,

together with our earlier order conditions, precludes small-world graphs. However, because

distances in a network rapidly shrink with a few random links (e.g. Watts and Strogatz,

1998), large enough noise terms should ameliorate this issue.

Towards the end of the paper, I discuss broader implications of the analysis along with

extensions. If linking incentives lead to strong hierarchies, a result from Sadler (2022) implies

that equilibrium actions in an unrelated network game of strategic complements follow the

same ordering, highlighting a mechanism through which networks can reinforce existing

inequalities. I also show that, if the mutual favorite property holds, better-response dynamics

robustly converge to the unique swap-proof stable graph. In the online appendix, I adapt

the solution concept from Sadler and Golub (2022) and note that our structural predictions
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continue to hold if we replace exogenous types with endogenous actions. If players who take

higher actions are more attractive neighbors, then we get either strong hierarchies or ordered

overlapping cliques depending on whether actions and links are complements or substitutes.

This paper makes two main contributions. First, it characterizes stable graphs in a

much larger class of games than any considered previously, linking predictions to qualitative

features of players’ payoffs. The mutual favorite property ensures existence and uniqueness

in an even larger class—including games with arbitrary link constraints and noisy benefits—

providing a key tool for future work. Second, it identifies a canonical model that explains

several features of real networks. While random graphs can readily fit desired structures, here

we tie these features to incentive properties like how steeply marginal linking costs increase

and how one’s desirability as a neighbor relates to one’s desire for links. The analysis thus

sheds light on when and why certain structures appear, identifying precisely what payoff

assumptions we need. In addition to these contributions, the notion of an improving swap

highlights the connection between network formation and matching—improving swaps are

blocking pairs by another name. As I discuss at various points, results here offer a unified

perspective that can help extend earlier findings. A companion project makes this connection

much more explicit (Sadler, 2023).

Related Work

Many non-strategic network formation models generate realistic networks—we can build-

in key features like homophily, clustering, and small-worlds through an exogenous random

process.7 For instance, Watts and Strogatz (1998) develop a canonical model that starts from

a tightly clustered lattice and randomly rewires a small percentage of links. This procedure

reliably generates highly clustered graphs with short path lengths. More recent efforts are

tailored for estimation, serving as inputs to applied research (e.g. Jackson and Rogers, 2007;

7See van der Hofstad (2017) for a technical survey.
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Breza et al., 2020; Chandrasekhar and Jackson, 2021). While good for fitting data, these

models have limited ability to illuminate the mechanisms behind regularities. In contrast,

strategic models provide a basis to understand how and why network features vary across

contexts, which in turn can help predict the impact of efforts to change networks.

Previous work, taking a middle path between random graphs and fully strategic network

formation, addresses possible sources of homophily. In Currarini et al. (2009, 2010), agents

decide how intensively to search for partners, but subject to this effort choice, random

meetings determine which links form. Homophily arises from both a preference for own-type

links and bias in the meeting process. Preference for own-type links leads members of larger

groups to invest more effort in friendships, while bias in the meeting process mechanically

generates homophily. My results highlight a different mechanism that can explain similar

patterns as the result of assortative matching, and I discuss later how one might attempt to

distinguish between these two explanations.

König et al. (2014) take a different hybrid approach, studying a dynamic process in

which links are continually added and deleted. They select agents to add and delete links

based on an exogenous random process, but which links an agent adds or deletes depend on

incentives. This combination of payoffs and random link changes specifies a Markov chain,

and the authors study its steady-state distribution. The payoffs imply that, without noise

in link selection, we get a nested split graph at every step of the process—this is a type of

core-periphery network. Moreover, the authors tune parameters of the random process to

fit other features, like the degree distribution, observed in trade and financial networks. As

with many random graph models, it remains unclear exactly how these features of the steady

state depend on various modeling choices. The present paper sheds light here, identifying

precisely what properties of the payoff function we need to obtain nested split graphs—in

particular, we get nested split graphs if more desirable partners also desire more links, and

the marginal cost of additional links is roughly constant. In Section 7.1, I also discuss a
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preference based explanation for heavy-tailed degree distributions.

Thus far, the strategic network formation literature contains precious few results that

characterize stable structures in families of games. Early papers focus on specific examples

that lead to simple structures. For instance, in their seminal work, Jackson and Wolinsky

(1996) study the “connections model” and the “coauthor model.” In the former, pairwise sta-

ble graphs are either complete, empty, or stars. In the latter, stable graphs always partition

players into cliques with distinct sizes. Other early examples include the “spatial connections

model” of Johnson and Gilles (2000), which leads to ordered overlapping cliques—though

for different reasons than in the present paper—and models of trade and market sharing

agreements in Furusawa and Konishi (2007) and Belleflamme and Bloch (2004) respectively,

in which stable graphs partition players into cliques.8

Moving beyond examples, Goyal and Joshi (2006) connect families of payoff functions to

particular network structures. In “playing the field games,” a player’s marginal payoff from

a link depends on how many connections she has and how many other links are in the graph.

Depending on whether own and others’ links exert positive or negative spillovers, stable

graphs can be complete, empty, stars, or have the dominant group architecture.9 In “local

spillover games,” the value of a link depends on how many connections a player has and

how many the potential neighbor has. Again, depending on the nature of spillovers, pairwise

stable graphs fall into a simple taxonomy: complete graphs, empty graphs, dominant group

architecture, interlinked stars, or exclusive groups.10 Allowing a larger class of payoffs,

Hellmann (2021) shows that if own and others’ links exert positive spillovers, stable graphs

are nested split graphs. Aside from stark predictions, symmetric payoffs are a key limitation

8There is also a significant literature in which linking decisions are unilateral (e.g. Bala and Goyal, 2000;
Galeotti and Goyal, 2010; Herskovic and Ramos, 2020). While the lack of mutual consent is an important
difference, much of this work similarly focuses on specific examples with very simple equilibrium structures.

9In the dominant group architecture, there is a single clique, and all other players are isolated.
10Interlinked stars partition players into a core and a periphery. Those in the core link with all others, and

those in the periphery link only with the core. Exclusive groups means that every component is a clique.
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in both papers—results do not extend to settings with heterogeneous players. In contrast,

the present paper relies on heterogeneity to ensure unique predictions.

Sadler and Golub (2022) present the most closely related analysis, introducing a model of

network games together with network formation. In the special case with degenerate action

sets, their model reduces to that in the present paper, assuming constant marginal costs. Un-

der analogous order conditions, pairwise stable graphs are either nested split graphs, where

we get strong hierarchies, or ordered overlapping cliques. As already discussed, increasing

marginal costs may preclude nested splits graphs because they require some players to main-

tain too many links, and swap-proofness is necessary to ensure ordered overlapping cliques in

our setting. Moreover, with minimal effort we can translate our structural results to games

on endogenous networks. Extending the framework of Sadler and Golub (2022), Section

A.3 shows that if higher actions make players both more attractive as neighbors and more

desiring of links, then stable outcomes are strong hierarchies. Likewise, if higher actions

make players more attractive, but reduce own linking incentives, then stable outcomes entail

ordered overlapping cliques.

Even if linking incentives have no relation to payoffs in a network game, the network

that forms can have a profound impact on equilibrium behavior. In Section 7.2, I highlight

particularly stark implications when linking incentives produce strong hierarchies. These

graphs belong to a larger class identified in Sadler (2022) that ensure robust predictions

in games of strategic complements. All else equal, equilibrium actions and payoffs align

with players’ positions in the network hierarchy. This illuminates a potentially important

mechanism through which a status ranking in one domain can reproduce itself elsewhere,

reinforcing and exacerbating existing inequalities.11

Although I focus on a refinement of pairwise stability, I nevertheless contribute to the

11Joshi et al. (2020) highlight a different mechanism that is similar in spirit. They study a network
formation model in which one set of links is given exogenously (e.g., inherited from older family connections),
and complementarities cause newly formed links to replicate the exogenous hierarchy.
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conversation about when pairwise stable graphs exist. Because pairwise stability entails

robustness to coalitional deviations—no two players can both benefit from forming the miss-

ing link between them—existence is difficult to ensure. Moreover, known results are often

difficult to check—e.g., a pairwise stable graph exists if the game has a potential (Jackson

and Watts, 2001; Chakrabarti and Gilles, 2007)—or require very strong assumptions—e.g.,

adding any link to the graph weakly increases the marginal value of all other links (Hellmann,

2013). Although my existence result applies less broadly than those based on potentials, the

assumptions are straightforward to check and easy to interpret. In fact, increasing marginal

costs often produce the opposite problem, a large multiplicity, which motivates refinement.

In general, swap-proofness is strictly weaker than other refinements. Goyal and Vega-

Redondo (2007) define “bilateral equilibrium,” which allows a pair of players to form a link

and potentially sever many links at the same time—with increasing marginal costs, this

turns out to be equivalent to swap-proof stability. Strong stability (Jackson and van den

Nouweland, 2005) requires robustness against arbitrary deviations by coalitions of any size—

the coalition can unilaterally sever any link attached to one of its members and add any link

between members of the coalition. The core for cooperative games is closely related, though

to define the value of a coalition, we must make a choice about how to deal with links

between the coalition and those outside it. If we assume there are no links to those outside

the coalition when determining its value, then Jackson and van den Nouweland (2005) show

that the core is equivalent to the strongly stable set under a broad class of payoffs. Taking

a different approach, Herings et al. (2009) define the farsightedly stable set, a concept that

is non-nested with pairwise stability. Farsighted stability introduces additional deviations,

as players compare the status quo to the endpoint of a sequence of changes, but it can

also eliminate myopically beneficial deviations if anticipated future changes deter the first

move. On net, this leads to a similar refinement in our setting, but as we see in Section 7.3,

swap-proof stability has the advantage of being a steady state for natural learning dynamics.
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The existence and uniqueness result in Section A.4 unifies and extends several findings

in the matching literature. Improving swaps are analogous to blocking pairs, and strate-

gic network formation presents a one-sided, many-to-many matching problem. However,

through our choice of linking costs and benefits, we can encompass any combination of

one or two-sided and one-to-one, one-to-many, or many-to-many matching. In two-sided

matching, acyclic preference conditions ensure a unique stable matching in both one-to-one

(Romero-Medina and Triossi, 2013) and many-to-many (Romero-Medina and Triossi, 2021)

markets. The mutual favorite property extends this logic to one-sided markets—the earlier

conditions imply it in the two-sided case. Gutin et al. (2022) show that a related condition is

both necessary and sufficient for a unique stable matching in two-sided, one-to-one markets.

Sadler (2023) generalizes this characterization to two-sided, many-to-many matching mar-

kets. Echenique and Oviedo (2006) establish the existence of stable matchings in two-sided,

many-to-many markets under weak conditions. With two sides, we can take advantage of

opposed interests and appeal to Tarksi’s theorem for existence, so their argument applies

to a broader class of payoffs. Using somewhat stronger assumptions, we get uniqueness in

addition to existence, and we include one-sided markets.

2 Network Formation Games

A network formation game is a finite set of players N = {1, 2, ..., n} together with a

payoff function ui(G) for each player i. The payoff ui takes as input a simple undirected

graph G with vertex set N . Given a graph G, I write Gi for the set of i’s neighbors and

di = |Gi| for player i’s degree. I also write G+E and G−E for the graph G with the edges

E respectively added and removed. Later sections provide more general results, but for now

I restrict attention to the following class of games: each player i has an observable type ti
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taking values in an arbitrary set T , and payoffs take the form

ui(G) =
∑
j∈Gi

g(ti, tj)− c(di), (1)

in which the cost c is increasing and convex. A link to j generates a benefit g(ti, tj), and the

marginal cost of a link c(di + 1)− c(di) is increasing in di.
12

The central question I ask is: what kinds of graphs G will the players form? The most

widely used solution concept in these games is pairwise stability. Intuitively, a graph G is

pairwise stable if no player is better off unilaterally deleting a link, and no two players are

both better off forming a link between them. As a first contribution, I introduce a refinement

of pairwise stability called swap-proofness.

Definition 1. A graph is pairwise stable if there is no ij ∈ G such that ui(G−ij) > ui(G)

and no ij /∈ G such that both ui(G + ij) ≥ ui(G) and uj(G + ij) ≥ uj(G) with at least one

strict inequality.

An improving swap is a link ij /∈ G together with two players k, ` ∈ N such that both

ui(G + ij − ik) ≥ ui(G) and uj(G + ij − j`) ≥ uj(G) with at least one strict inequality.13

A pairwise stable graph G is swap proof if there is no improving swap, and G is then a

swap-proof stable graph.

A pairwise stable graph is swap-proof if no two players i and j are both better off if they

form a link and each (possibly) delete a different link at the same time. If the cost function

c is linear, or concave, then swap-proofness has no bite. In this case, the marginal value to

i of a link with j is either constant or increasing as we add links to the graph. Hence, if an

improving swap exists, the players involved are also better off simply adding the link without

12One can write equivalent payoff functions with concave benefits and constant costs, but this choice
simplifies the presentation. Note that “types” here are public information, not private information.

13In this definition, I interpret k = i as the case in which i simply adds the link to j without deleting any
other link, and similarly ` = j means j simply adds the link to i without deleting any other link.
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any deletions. However, if c is strictly convex, then pairwise stability allows unappealing

outcomes: two players i and j might both benefit more from linking with one another than

from existing links. For instance, imagine there are three players 1, 2, and 3, the cost of d

links is c(d) = 2d2, and every other player values a link to player i at i+ 2. This implies that

a single link to any other player adds value, but a second link is always too costly. Hence,

any graph with a single link is pairwise stable, including the one in which players 1 and 2

are linked. Intuitively, player 2 should drop her link to player 1 and form the more valuable

link with player 3, and this is exactly what swap-proofness predicts—the unique swap-proof

stable graph has exactly one link between players 2 and 3.

While we could imagine other deviations, I quite intentionally focus on a minimal refine-

ment. As we shall see, this already yields a unique prediction in a large class of games—

considering a larger set of deviations can only further refine outcomes, so our structural

results still hold. One might worry about refining away existence, but at least in our setting,

swap-proof stability precludes a much larger set of profitable deviations. With increasing

marginal costs, pairwise stability is equivalent to pairwise Nash stability, a stronger solution

concept requiring that no player can profit from unilaterally deleting any subset of her links.

Moreover, since linking benefits depend on a potential partner’s attributes, and not on her

set of neighbors, players need not worry about what else a new neighbor might do when

deciding to form a link. Hence, with payoffs of the form (1), swap-proof stability exactly

captures robustness to any deviation that a coalition of size two could implement.

Improving swaps are analogous to blocking pairs in matching models: two players are

better off dropping existing matches for one another. In fact, we can view many matching

problems as special cases of network formation. To obtain a two-sided matching problem,

partition types into two groups and make the benefit term g(ti, tj) negative whenever ti and

tj are in the same group. To impose a fixed link capacity, take c(d) = 0 for all sufficiently

small d, and make subsequent cost increments larger than any benefit. Because I do not
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insist on a partition of players into two sides (e.g., buyers and sellers, schools and students),

any player can match with any other, and we have a challenge to ensure that swap-proof

stable graphs exist. In two-sided matching, the two sides’ implicitly opposed interests allow

us to apply Tarski’s theorem, yielding best and worst stable matchings for each side. In

general, no such analysis is possible here. Indeed, pairwise stable graphs need not exist, and

even when they do, the game may not have any that are swap-proof.

A three player example neatly illustrates the difficulties with existence. Suppose there

are three players 0, 1, and 2, and the linking benefits are g(t1, t0) = g(t2, t1) = g(t0, t2) = 1,

and g(t1, t2) = g(t2, t0) = g(t0, t1) = 3—player k earns 1 from linking to player k − 1 (mod

3) and 3 from linking to player k + 1 (mod 3). If the first link is free but the second costs

2, so c(0) = c(1) = 0 and c(2) = 2, then there is no pairwise stable graph. To see this, note

the empty graph is not stable because any pair has an incentive to link, and any player with

2 links should unilaterally delete the less valuable one. Moreover, a graph with a single link

is never stable because one of the two players is linked with her less preferred partner, so

adding a link to the isolated player gains 3− 2 = 1.

Suppose instead that c(2) = 4, so a second link is always prohibitively expensive on the

margin. Now any graph with a single link is pairwise stable, but any such graph has an

improving swap—the player linked to her less preferred neighbor can swap this neighbor for

the isolated player. Figures 1 and 2 illustrate. We clearly need some further assumptions.

In the next section, I introduce the mutual favorite property, a novel acyclicity condition

ensuring that a unique swap-proof stable graph exists.

3 The Mutual Favorite Property

The benefit g(ti, tj) defines a preference order for each player over potential neighbors.

I write j �i k if g(ti, tj) ≥ g(ti, tk), indicating that player i prefers j as a neighbor over k.
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Figure 1: Payoffs with c(2) = 2: no pairwise stable outcome exists.

Figure 2: Payoffs with c(2) = 4: all graphs are pairwise stable, but all have improving swaps.

Given a set of edges E, I say that ij ∈ E is a mutual favorite for E if j maximizes �i

among all k such that ik ∈ E, and likewise i maximizes �j among all ` such that j` ∈ E.

The game has the mutual favorite property if every set of edges contains a mutual favorite.

Definition 2. Given a set of edges E, link ij ∈ E is a mutual favorite for E if j �i k

for each k with ik ∈ E and i �j ` for each ` with j` ∈ E. A network formation game has

the mutual favorite property if every set of edges E contains a mutual favorite.

Intuitively, the mutual favorite property is an acyclicity condition. Since each collection

of edges E = {i1i2, i2i3, ..., iKi1} contains a mutual favorite, we can never have a cycle of

improving swaps. Moreover, if the mutual favorite property fails, then we can find a cycle

i1i2, i2i3,...,iKiK+1 = iKi1 in which ik+1 �ik ik−1 for every k = 1, 2, ..., K.

At first glance, it might seem difficult to check whether the mutual favorite property ever

holds, but at least two natural classes of payoffs always satisfy it. The first is central to our

characterizations in the next section. Suppose players share a common ranking over potential

neighbors—the orders �i and �j are the same for any i and j. Given payoffs of the form (1)

and an ordered set of types, we might posit that the benefit g(t, s) of a type s neighbor to a
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type t player is increasing in s. To find a mutual favorite for any set of edges E, simply look

for the highest type at the end of any edge in E and choose that player’s most preferred edge.

Alternatively, suppose payoffs take the form (1), and g(t, s) = g(s, t) for all types t, s ∈ T .

With symmetric benefits, the maximum over all links in E is clearly a mutual favorite. Such

a structure arises if T is a metric space and the benefit from linking depends on the two

players’ distance from one another. Thus, we can readily cover settings in which players

explicitly seek neighbors who are most similar to—or most different from—themselves.

In addition to the mutual favorite property, we need to assume there are no indifferences.

Definition 3. Payoffs exhibit no indifference if g(ti, tj) 6= g(ti, tk) for all i, j, and k, and

ui(G+ ij) 6= ui(G) for all i, j, and G.

This means that no player is ever indifferent between two potential neighbors, nor about

adding a link. The following Theorem shows that the mutual favoritie property, together

with no indifference, implies that a unique swap-proof stable graph exists. Moreover, the

proof is constructive: we can find this graph using a greedy algorithm.

Theorem 1. Suppose payoffs exhibit no indifference, and the game has the mutual favorite

property. There exists a unique swap-proof stable graph.

Proof. Using the mutual favorite property, order all potential links i1j1, i2j2, i3j3, ... so that

ikjk is a mutual favorite in the set {i`j` : ` ≥ k}.14 Going in order, add link ikjk whenever

doing so benefits both players, taking existing links as given. The resulting graph G is clearly

pairwise stable as each new link benefits both players involved, and each existing link is even

better than the latest addition. Any link ikjk /∈ G failed to benefit one of the two players

when it was evaluated—without loss, suppose ik preferred not adding link ikjk. Since costs

are convex, and player ik prefers partner jk to all subsequent options on the list, we know

14The ability to order links in this way is in fact equivalent to the mutual favorite property—given such
an ordering, the first link in any subset E is a mutual favorite for E.
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that player ik adds no further links. Since ik prefers all existing partners to jk, there can be

no improving swap that adds link ikjk. We conclude that G is swap-proof.

Now suppose there are two distinct swap-proof stable graphs G and G′. Let ikjk be the

first link in our order that appears in one of the graphs but not the other—without loss,

suppose ikjk ∈ G and ikjk /∈ G′. Write dik and djk for the two players’ degrees in G, and

write d′ik and d′jk for the two players’ degrees in G′. I show that player ik is willing to either

add link ikjk in graph G′, or at least carry out a swap—a symmetric argument shows the

same for player jk. If dik > d′ik , then since costs are convex, the value of a link to player jk

is higher than the marginal cost of that link in G′: player ik would willingly add link ikjk

in G′. Alternatively, if dik ≤ d′ik , then ik has a neighbor j∗ in G′ that is not a neighbor in

G. Since ikjk is a mutual favorite for the set {i`j` : ` ≥ k}, and all previous links are either

in both graphs or neither, we know that player ik prefers jk to j∗. Hence, player ik has a

neighbor she would swap for jk. Since player jk is similarly willing to either add link ikjk to

G′, or swap another neighbor for ik, we conclude that G′ is not swap-proof.

Though tangential to my main goal—relating the structure of stable graphs to features

of players’ payoffs—Theorem 1 represents a significant contribution in its own right. Even

simple network formation games often have a large multiplicity of pairwise stable graphs,

but a natural refinement yields uniqueness in a wide range of settings. As I illustrate later

in this section, this includes classic models of two-sided matching markets. With unique

predictions, it becomes far easier to think about how to estimate linking preferences from

network data. In Section 6, I show that the mutual favorite property holds in a model that

incorporates noise into linking incentives, suggesting one potentially fruitful approach. In the

Online Appendix, I present simple examples highlighting that no-indifference is important

for both parts of this result, and I provide a detailed discussion of how the mutual favorite

property relates to other acyclicity conditions in the matching literature.
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4 Stable Network Structures

What do swap-proof stable graphs look like? This section highlights key structural fea-

tures. If players have the same ranking of potential neighbors, then swap-proof stable graphs

robustly exhibit homophily and clustering, and this ranking induces a clear status hierarchy.

With further assumptions on players’ desire for links, we obtain different architectures re-

sembling real networks is certain contexts. If more desirable neighbors also want more links,

then swap-proof stable graphs have a tiered structure similar to, but less rigid than, the

core-periphery networks appearing in other models. If more desirable neighbors want fewer

links, then players organize themselves into ordered cliques, potentially with some overlap.

Going forward, I assume the set of types T is linearly ordered, and the benefit g(t, s) is

strictly monotonic in its second argument. I say desirability is increasing (decreasing)

in type if g is strictly increasing (decreasing) in its second argument. Since we can always

reverse the type order, it is without loss to assume desirability is increasing in type. Substan-

tively, this means that we can order players according to their attractiveness as neighbors,

and every player agrees on this ordering. For convenience, I index the players in decreasing

order, so t1 ≥ t2 ≥ .... ≥ tn, so lower indices are more desirable neighbors. Later results also

require monotonicity in the first argument. I say sociability is increasing (decreasing)

in type if g is strictly increasing (decreasing) in its first argument—if g is constant in the

first argument, I say sociability is constant in type. Intuitively, desirability is increasing

in type if higher types are more attractive neighbors, and sociability is increasing in type if

higher types are more inclined to form links. As noted in the last section, if desirability is

increasing in type, the game has the mutual favorite property, and Theorem 1 generically

guarantees a unique swap-proof stable graph.
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4.1 Homophily and Clustering

A first result bounds how far two neighbors are from one another in the type order,

implying that swap-proof stable graphs entail significant homophily, particularly in large

populations. Throughout this section, I assume types are distinct, and players are indexed

in decreasing type order—we have t1 > t2 > ... > tn.

Theorem 2. Suppose payoffs take the form (1), desirability is increasing in type, and G is

a swap-proof stable graph. If there exists a bound d such that 1 ≤ di ≤ d for each player i,

then |i− j| ≤
⌈
d
2

⌉(⌊
d
2

⌋
+ 1
)

for any ij ∈ G.

Proof. I prove a slightly more general result that implies the theorem. Assume there is also

a lower bound d so that d ≤ di ≤ d for every player i, and two players i < j are linked with

one another—I show how to construct a bound on |i− j| as a function of both d and d.

I begin with a few preliminary observations. If there is a third player k with i < k < j

and k /∈ Gi, then we must have ` < i for every ` ∈ Gk—otherwise i should swap j for k, and

k has a neighbor she would swap for i. Furthermore, we have Gk ⊆ Gi because any ` ∈ Gk

with ` /∈ Gi would swap k for i, and i would swap j for `. Finally, note that all players ` < i

with a link to some k > i must be linked with one another—if two were not linked, they

would swap their higher indexed neighbors for each other.

Let S denote the set of players ` < i such that k ∈ G` for some k between i and j, with

k /∈ Gi, and define r = |S|. This group of players can form at most r(d − r) links with

such players k—each member of S must spend r − 1 links to other members of S and one

additional link to player i. We necessarily have r < d. Therefore, the total number of links

available to players k between i and j, with k /∈ Gi, is at most bd
2
c·dd

2
e, which we can achieve

taking r = bd
2
c. As r increases past this point, we decrease the number of available links,

and we increase the number of players to whom i must link.

Suppose there are mi players between i and j who are neighbors of i, and there are mo
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players between i and j, who are not neighobrs of i. The later group requires at least mod

links, so we necessarily have

mod ≤
⌊
d

2

⌋
·
⌈
d

2

⌉
=⇒ mo ≤

1

d
·
⌊
d

2

⌋
·
⌈
d

2

⌉
:= C.

For eachmo below this bound, write r(mo) for the smallest value of r such that r(d−r) ≥ mod.

Player i has degree at least mi +r(mo)+1 as there are mi links to players between i and j, a

total of r(mo) links to players ` < i, and 1 link to player j. The maximum distance between

i and j is therefore bounded by the solution to

max
mi,mo≥0

mi +mo + 1

s.t. mi + r(mo) + 1 ≤ d.

As long as d ≤ d
2
, the solution chooses mo = bCc, r(mo) = bd

2
c, and the optimal value is

mi +mo + 1 =

(
d−

⌊
d

2

⌋
− 1

)
+ bCc+ 1 =

⌈
d

2

⌉
+ bCc.

Taking d = 1 gives

bCc =

⌊
d

2

⌋
·
⌈
d

2

⌉
,

and the bound becomes

mi +mo + 1 ≤
⌈
d

2

⌉(⌊
d

2

⌋
+ 1

)
as desired.

Theorem 2 constrains the distance between any two neighbors’ types in the ordering. If d

is small, the bound is very restrictive—if d = 1, all neighbors are adjacent in the type order,

and if d = 2, neighbors’ indices can differ by at most 2. As the bound grows quadratically,
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it becomes much more permissive as d increases. Because the bound is independent of

population size, its implications are more stark in larger groups. For instance, suppose T is

a compact interval in R, and types are i.i.d. draws from an atomless distribution on T—for

n large enough, a player’s neighbors come exclusively from an arbitrarily small ε-ball around

her own type. This echoes empirical findings that racial homophily in high school friendship

networks is more pronounced in larger schools (Currarini et al., 2010).

The underlying logic of this result is exactly the same as in classic models of assortative

matching (Becker, 1973): people at the top of the ranking want to match with each other,

leaving those below them to match amongst themselves. Theorem 2 extends this reasoning

to a many-to-many matching market with only one side—any player can form a link with

any other. Convex linking costs are key. If linking costs were linear, then as the population

grows, each player should simply add more links. A type t player can have a type s neighbor,

with s far away from t, as long as the gain g(t, s) is larger than the constant marginal cost.

Convexity forces players to be more discerning. If the marginal cost of a link c(d+ 1)− c(d)

grows without bound, then there must be some finite maximal degree d in any pairwise stable

graph—if there exists d such that c(d+1)−c(d) > g(t, s) for all types t and s, then no player

can ever have more than d links in a stable outcome. Since having more than d neighbors is

prohibitively expensive, each player seeks only the best neighbors who are willing to link with

her. As the pool of potential neighbors expands, those with significantly higher types have

better options, but a player need not look far below her own type to exhaust her budget.

Theorem 2 alone is insufficient to ensure clustering. Nevertheless, a simple argument

shows that, at the top of the desirabiltiy order, we necessarily have a tightly connected core.

Proposition 1. Suppose payoffs take the form (1), desirability is increasing in type, and G

is a swap-proof stable graph. Let K denote the largest integer such that di ≥ K − 1 for all

i ≤ K. Players 1, 2, ..., K form a clique in G.

Proof. Suppose not. Then there exist players i, j ≤ K such that ij /∈ G, and players k, ` > K
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such that ik, j` ∈ G. Adding ij to G while deleting ik and j` is an improving swap.

Although Proposition 1 only guarantees the existence of a single clique, the same holds

within any connected component of G. Discarding the component with the most desirable

players, the result applies immediately to the subgraph that remains. Moreover, the com-

ponents themselves are necessarily ordered. If the component containing player 1 has m

players in total, they are the m players with the highest types, assuming each has at least

one neighbor—if not, we can readily construct an improving swap.15 This outlines a general

pattern: stable graphs have a strict hierarchy among their connected components, and each

component contains a tightly connected core among its highest ranked members.

4.2 Strong Hierarchies and Ordered Overlapping Cliques

Previous work shows that order conditions on players’ linking incentives imply strong

restrictions on the kinds of network structures that can form (Sadler and Golub, 2022).

These findings implicitly rely on linear (or concave) linking costs. While convex linking

costs create new challenges, reviewing the structures that appear in earlier results provides

a helpful reference point as we build towards a new characterization.

Definition 4. A graph G is a nested split graph if we can parition the non-isolated

vertices into sets V1, V2, ..., VK such that for each i ∈ Vk, we have

Gi =
K⋃

`=K+1−k

V` \ {i}.

A graph G consists of ordered overlapping cliques if we can order the vertices {1, 2, ..., n}

such that Gi ∪ {i} is an interval for each i, and the endpoints of this interval are weakly

increasing in i.

15If i is the lowest index not in this component, then one of the first i − 1 players has a neighbor j > i
who she would swap for i, and i would swap any of her neighbors for this link.
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Nested split graphs exhibit an extreme hierarchical structure—if i is in a lower partition

element than j, then i’s neighborhood is a strict subset of j’s.16 Assuming linear linking

costs, the results of Sadler and Golub (2022) imply that, if sociability is increasing in type,

pairwise stable graphs are nested split graphs. Because some vertices necessarily have a large

number of neighbors in a nested split graph—those in the highest partition element link with

all others—convex linking costs may preclude this structure. If sociability is decreasing in

type, rather than increasing, the earlier findings predict ordered overlapping cliques. In these

graphs, whenever two players i and j are linked, the set of players in between i and j form a

clique. In contrast with nested split graphs, ordered overlapping cliques need not entail large

neighborhoods—while this structure is consistent with a complete graph, it is also consistent

with any finite bound on vertex degrees.

Because ordered overlapping cliques are consistent with low degrees, this prediction is

robust to convex linking costs. In the opposite case, with sociability increasing in type, we

require a more flexible class of graphs that I call strong hierarchies. Strong hierarchies sort

players into ranked tiers much like nested split graphs, but they also permit arbitrary bounds

on vertex degrees.

Definition 5. A graph G is a strong hierarchy if we can order the vertices {1, 2, ..., n}

such that whenever i < j, we have di ≥ dj and

max{k ∈ Gi} < min{` ∈ Gj \ {i} : ` /∈ Gi}.

In a strong hierarchy, if i is ranked higher than j, then i has weakly more neighbors

than j, and if j has a neighbor ` /∈ Gi, then every neighbor of i has higher rank than `.

Neighborhoods need not be ordered by set inclusion as long as a higher ranked vertex can

match every neighbor of a lower ranked vertex with a higher ranked neighbor of its own.

16To be precise, this statement applies to i’s self-inclusive neighborhood, meaning player i together with
all of her neighbors.
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Figure 3 illustrates a strong hierarchy and a comaprable nested split graph—both graphs

feature 12 vertices with 4 distinct degree values. A nested split graph necessarily has one

connected component, is always densely connected, and every vertex with a given degree has

a symmetric network position. In contrast, strong hierarchies may have multiple connected

components, can be far less dense, and feature more diverse local structures. Nevertheless,

the strict ranking of vertices is still apparent—higher vertices are connected to other higher

vertices, and they have more connections.

Figure 3: A strong hierarchy (left) and a nested split graph (right).

The main result in this section characterizes stable network structures when sociability

is increasing or decreasing in type. In the former case, the graphs are precisely the strong

hierarchies, and in the latter case, they are ordered overlapping cliques. The result is tight

in that any graph within these classes can appear as a swap-proof stable graph in a network

formation game satisfying the requisite order conditions.

Theorem 3. Suppose payoffs take the form (1), and desirability is increasing in type.

(a) If sociability is increasing in type, then the unique swap-proof stable graph G is a strong

hierarchy with respect to the player order. Moreover, for any strong hierarchy G̃, there

exists a corresponding network formation game of this form such that G̃ is a swap-proof
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stable graph.

(b) If sociability is decreasing in type, then the unique swap-proof stable graph G consists of

ordered overlapping cliques with respect to the player order. Moreover, for any ordered

overlapping cliques G̃, there exists a corresponding network formation game of this

form such that G̃ is a swap-proof stable graph.

Proof. Suppose sociability is increasing in type. If the graph G is not a strong hierarchy

with respect to the player order, then there exist players i < j, so ti > tj, such that either

dj > di, or there exist distinct players k < ` such that k is a neighbor of j but not i, and `

is a neighbor of i. In the latter case, player i would gladly swap ` for k, and k would gladly

swap j for i, so the graph G is not swap-proof.

If dj > di, there is some k∗ ∈ Gj with k∗ /∈ Gi. Since j finds it optimal to link with k∗,

from ti > tj we have

g(tj, tk∗)− (c(dj)− c(dj − 1)) ≥ 0 =⇒ g(ti, tk∗)− (c(dj)− c(dj − 1)) > 0

=⇒ g(ti, tk∗)− (c(di + 1)− c(di)) > 0,

so player i wants to link with k∗. If k∗ drops her link to j and exchanges it for the link to i,

the change in utility is g(tk∗ , ti) − g(tk∗ , tj) > 0, so player k∗ would gladly make this swap.

Hence, the graph G is not swap-proof. We conclude that the graph G must be a strong

hierarchy with respect to the player order.

Given any G̃ that is a strong hierarchy with respect to the player order, fix a strictly

convex cost function c and construct benefits g(t, s) as follows. For each degree d, let id denote

the highest index such that player id has degree d in G̃—all players with higher indices have

strictly fewer neighbors, and all with lower indices have weakly more. Let jd denote the

highest index among players in G̃id , and define g(tid , tjd) = c(d) − c(d − 1)—the benefit is

just high enough that player id is willing to link with jd. For each t 6= tjd , define g(tid , t) to
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be increasing in t, with c(d+ 1)− c(d) > g(tid , t) > c(d−1)− c(d−2) for all t. Then for each

id+1 < i < id, we can define g(ti, t) increasing in t so that c(d)− c(d− 1) > g(ti, t) > g(tid , t)

whenever t < tjd and g(tid+1
, t) > g(ti, t) > c(d)−c(d−1) whenever t ≥ tjd—note that because

G̃ is a strong hierarhcy, each such player i has exactly d neighbors, and these neighbors all

have weakly higher types than player jd. It is straightforward to check that the resulting

benefits sustain G̃ as a swap-proof stable graph.

Now assume sociability is decreasing in type, and there are three players i < j < k

with ik ∈ G. I show that ij ∈ G—an analogous argument shows that jk ∈ G, thus

establishing part (b). Given the ordering on types, we have g(tj, ti) > g(tj, tk) > g(ti, tk)

and g(tk, tj) > g(ti, tj) > g(ti, tk). That is, players i and k find it at least as valuable to link

with j as i finds it to link with k, and j finds it at least as valuable to link with k and i as i

finds it to link with k. Note that i is always willing to swap k for j because j has a higher

type. If dj < di, then j benefits from linking with i because g(tj, ti) > g(ti, tk) and costs are

convex. It remains to show that if dj ≥ di, then j would benefit from either adding a link

with i, or swapping an existing neighobr for i.

Suppose dj ≥ di and i /∈ Gj. Since k ∈ Gi, player j has at least one neighbor ` who is not

a neighbor of i—if k were a neighobr of j, player j would swap k for i. If ` < i, then i should

swap k for `, and ` should swap j for i—the graph cannot be swap-proof. If ` > i, then j

would swap ` for i. Hence, player j either benefits from linking with i, or has a neighbor

she would swap for i. We conclude that if G is swap-proof and ik ∈ G, then we must have

ij ∈ G as well. The claim that jk ∈ G follows from a similar argument.

Given any G̃ that consists of ordered overlapping cliques with respect to the player order,

fix a strictly convex cost function c and construct benefits g(t, s) as follows. For each player

i, define j(i) = max{i, j ∈ G̃i}, and take g(ti, tj(i)) = c(di) − c(di − 1)—the benefit is just

high enough so that i is willing to link with j(i). Because j(i) is weakly increasing in i, this

is consistent with a benefit function g that is decreasing in its first argument and increasing
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in its second, and G̃ is a swap-proof stable graph for any such g.

The strong hierarchies in case (a) are less stark than nested split graphs, but they retain

a tiered structure with important behavioral implications. Strong hierarchies are a subset

of the overlapping hierarchies first identified in Sadler (2022). The earlier paper shows that

overlapping hierarchies are exactly those graphs that permit a robust ordering of players’

actions in network games of strategic complements—all else equal, higher ranked players in

the network hierarchy must take higher equilibrium actions. Hence, linking incentives that

are unrelated to subsequent strategic interactions can nevertheless become an important

determinant of behavior in such games. Section 7.2 discusses this in more detail.

The ordered overlapping cliques in case (b) imply a level of homophily and clustering

beyond what Theorem 2 and Proposition 1 guarantee. If no player has more than d neighobrs,

the structure immediately implies a more stringent bound on the distance between neighbors’

types: we must have |i − j| ≤ d + 1 for any ij ∈ G. Moreover, any player with a neighbor

at distance 2 or greater has a positive local clustering coefficient. While the qualitative

prediction here is the same as with linear or concave linking costs, the underlying mechanism

is distinct. With linear costs, whenever two players are linked there is a strict incentive to

add all links to players in between. Here, the same logic implies the benefit of these links is

greater than the existing one, but convex costs may preclude outright addition. Instead, we

find that if such links are not part of the graph, then an improving swap must exist. If costs

are linear, then every pairwise stable graph consists of ordered overlapping cliques, but that

is not true if costs are convex—the swap-proof refinement is essential.

The contrast between convex and linear costs is particularly stark at the boundary be-

tween cases (a) and (b). If sociability is constant in type, and linking costs are linear or

concave, then any pairwise stable graph is a nested split graph that consists of ordered

overlapping cliques. The only compatible structure, the dominant group architecture, is ex-

28



tremely rigid—these graphs contain a single connected component that is a clique, possibly

with some isolated vertices. With convex linking costs, a swap-proof stable graph is a strong

hierarchy that consists of ordered overlapping cliques. These graphs partition vertices into

potentially multiple cliques, with higher ranked vertices in weakly larger cliques.

Corollary 1. Suppose payoffs take the form (1), desirability is increasing in type, and G is

a swap-proof stable graph. If sociability is constant in type, then every component in G is a

clique, and higher types are in weakly larger cliques.

Proof. Let k denote the highest index neighbor of player 1. Since the graph consists of

ordered overlapping cliques, players 1 through k form a clique. Since the graph is a strong

hierarchy, no member of this clique can have more than k − 1 neighbors, so the first k

players form a clique that is isolated from all other players. Iterating this argument for each

subsequent component proves the claim.

The graphs that emerge in this special case approximate friendship networks that emerge

in schools (Adler and Adler, 1995; Gest et al., 2007). Homophily and clustering are especially

pronounced. Corollary 1 also provides a microfoundation for group matching models, in

which networks are assumed to have this structure, and each player chooses which clique to

join.17 Even if players could choose to interact outside their cliques, this result highlights

natural conditions under which the group matching assumption is without loss.18

4.3 Explaining Different Networks

Our results so far highlight two dimensions along which linking incentives can vary:

How quickly do marginal costs increase, and are more desirable neighbors more or less

sociable? Differences in these incentives help explain different network structures. Whether

17See, for instance, Baccara and Yariv (2013) and Chade and Eeckhout (2018).
18Sadler and Golub (2022) provide an alternative microfoundation that depends on having natural divisions

in the set of types.
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the marginal cost of linking increases rapidly, slowly, or not at all dictates whether or not we

can find individuals with very high degrees. Theorem 2 then tells us that a tighter bound

translates into greater assortativity. When desirability and sociability are aligned, stable

graphs display a stark hierarchy that one can identify from links alone. When desirability

and sociability are opposed, status differences are less apparent from the network structure

itself, and we get far more clustering.

Although the argument in Theorem 2 relies on assortative matching, this need not imply

aggregate assortativity along either types or degrees. With a common ranking over potential

neighbors, each player links with the highest types who are willing to reciprocate. This

can lead to positive or negative assortativity depending on other payoff features. Negative

assortativity arises if high types have many connections and low types have few, leading to

core-periphery graphs in which low types link only with high types. As König et al. (2014)

show, such graphs provide a good fit for trade networks, with large firms and countries

occupying more central positions. In light of our findings, this suggests that large firms or

countries are both more desirable partners and find links more profitable, and that linking

costs are not very convex. In contrast, the cliques that appear in many social networks

suggest more rapidly increasing marginal costs and less alignment between desirability and

sociability. Taken together, our results help delineate when we should expect assortativity

and when we should not, telling us what features of players’ incentives are important.

5 A Hybrid Model for Large Networks

Within smaller communities—schools, neighborhoods, workplaces—it makes sense to

think about people selecting precisely with whom they link, but this assumption becomes

tenuous in large populations. For this reason, many researchers turn to random graph mod-

els or, more ambitiously, to search models (e.g. Currarini et al., 2009, 2010). While adept at
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fitting key features of large graphs, such models offer limited explanatory power. Although I

explicitly focus on smaller networks, an easy corollary of Theorem 1 opens up a new approach

for studying larger ones.

Suppose we augment our players and payoffs with an exogenous set of feasible links F . I

call the triple (N,F, {ui}i∈N) a network formation game with link constraints. Players

form a graph using only links in F , but importantly, and in constrast with search models,

they still actively choose which links to form. We can straightforwardly adapt our definitions

of pairwise stability and swap-proof stability.

Definition 6. In a network formation game with link constraints, a graph G is pairwise

stable if it contains only links in F , there is no ij ∈ G such that ui(G − ij) > ui(G), and

there is no ij ∈ F , with ij /∈ G, such that both ui(G + ij) ≥ ui(G) and uj(G + ij) ≥ uj(G)

with at least one strict inequality.

A pairwise stable graph G is swap proof if there is no improving swap that involves adding

a link from F , and G is then a swap-proof stable graph.

The only difference here from Definition 1 is that for link additions and swaps, we only

consider links in the feasible set F . There are several ways to interpret feasible links. They

might represent random meetings, with players then choosing whether or not to invest in a

relationship. Alternatively, geographic proximity might determine which links are feasible

(e.g., living in the same neighborhood). The feasible set could also be a design choice in

some settings—students are assigned to classrooms, workers to teams, etc. In any event,

the mutual favorite property, appropriately adjusted to consider only subsets of F , ensures

a unique swap-proof stable graph via exactly the same argument as before.

Definition 7. A network formation game with link constraints has the mutual favorite

property if every subset of feasible edges E ⊆ F contains a mutual favorite.
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Corollary 2. In a network formation game with link constraints, suppose payoffs exhibit no

indifference, and the game has the mutual favorite property. There exists a unique swap-proof

stable graph.

Proof. The result follows from an identical argument to that of Theorem 1, except at the

start we only enumerate the links in F .

As Corollary 2 illustrates, the existence and uniqueness of swap-proof stable graphs is

robust to a wide range of added constraints. Our methods apply regardless of how feasible

links arise, providing a new tool to study strategic network formation at scale. Unlike random

graphs or search models, here players can direct their linking efforts towards specific other

individuals, and we can readily incorporate realistic constraints through the feasible set F .

Understanding how incentives and feasible links interact to determine network structure is

a wide open frontier for further work. Although this problem requires its own literature to

address, I can offer a few observations that should prove helpful.

6 A Model with Noise

One might worry that Theorem 1 breaks down when faced with the noisy reality of human

behavior—real preferences are unlikely to strictly adhere to our order conditions. To address

this concern, I present a model in which linking benefits depend on players’ types as well

as on noise that is idiosyncratic to each pair. These payoffs are consistent with any realized

graph, and more importanty, they satisfy the mutual favorite property.

Suppose payoffs take the form

ui(G) =
∑
j∈Gi

(vi + wj + εij)− c(di), (2)

in which εij = εji is an idiosyncratic error term specific to each pair. The value vi captures
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player i’s overall desire for links, the value wi captures player i’s attractiveness to others, and

the error term captures match specific benefits or costs—this could depend on both individual

attributes as well as random noise. Assuming distinct types, these payoffs specialize (1). In

empirical applications, we would likely write vi and wi in terms of a coarse set of observable

traits, and we would model the error terms via a parameterized distribution.

What is important from a theoretical standpoint is that the match specific term is com-

mon to both players: this gives us the mutual favorite property. If the errors εij are drawn

independently from a continuous distribution, then we get no indifference with probability

one, and a unique swap-proof stable graph must exist.

Proposition 2. If a network formation game has payoffs of the form (2), it has the mutual

favorite property.

Proof. We proceed by contradiction. If the game does not have the mutual favorite property,

then there exists a collection of edges E = {i1i2, i2i3, i3i4, ..., iK−1iK , iKi1} such that each

player i strictly prefers the link to player i + 1 over the link to player i− 1 (mod K). This

gives us the inequality

vi + wi−1 + εi−1,i < vi + wi+1 + εi,i+1 =⇒ εi−1,i < wi+1 − wi−1 + εi,i+1.

Start with i = 1 and proceed iteratively to obtain

εK1 < w2 − wK + ε12 < w2 − wK + w3 − w1 + ε23

<
∑̀
j=2

(wj − wj−2) + ε`−1,` < wK−1 − w1 + εK−1,K < εK1,

in which the last line collapses the telescoping sum. Since we cannot have εK1 < εK1, we

conclude that no such collection E exists, and the game has the mutual favorite property.
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Proposition 2 further illustrates the power of the mutual favorite property. Beyond its

robustness to link constraints, the property persists even with a quite general form of noise

in the linking benefits. This should prove helpful for empirical research that seeks to infer

link preferences from network data.

7 Discussion

The analysis in this this paper touches on an unusually broad set of related questions. In

this section I discuss in turn how to capture other empirical regularities, games played on

the networks that form, and dynamic foundations.

7.1 Other Features of Real Networks

Particularly in large graphs, we find important regularities beyond homophily and clus-

tering. Two of the most widespread phenomena are “small worlds” and heavy-tailed degree

distributions. Small worlds refers to the short distances between typical individuals in a

network.19 Although our model is tailored for smaller graphs, we can still ask whether it

would replicate this feature in a large population.

The answer clearly depends on payoffs—any graph can be stable if exactly those links are

valuable to the players. However, the graphs we found in Section 4 need not feature small

worlds. With a common desirability ranking, and a bound on player degrees, Theorem 2

implies that the average distance between two players grows linearly in population size. Small

worlds are only possible if some players have very high degrees. However, long distances in

a network are highly sensitive to noise, and a few random links quickly shrink the typical

distance between a pair of vertices.20 Looking at the model in Section 6, if the noise terms

19Milgram (1967) coined the term “six degrees of separation” to describe this feature. More recent work
suggests distances in human social networks have become shorter over time (Dodds et al., 2003; Backstrom
et al., 2012).

20For instance, Watts and Strogatz (1998) study a random graph model that starts from a highly clustered
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are random and large enough, the stable graph will feature small worlds even if payoffs satisfy

the order conditions without noise.

Heavy-tailed degree distributions are another prominent regularity in real networks—the

vertices with the highest degrees typically have an order of magnitude more connections than

average.21 As with small worlds, this pattern is most stark in large networks, but it appears

even in moderately sized ones. For instance, looking at the network of coauthorships among

academic economists during the 1990s, Goyal et al. (2006) document that the average degree

is 1.67 while the top hundred authors have an average degree over 25. We can readily generate

such networks through appropriate type distributions, and at least in this example, doing

so seems reasonable. Some researchers write few papers that are mostly single-authored,

while others write many papers, each with multiple coauthors. The ubiquity of heavy-

tailed distributions in other domains (e.g., the top few taxpayers account for a large share

of overall tax revenue, a firm’s top customers account for a large fraction of overall sales,

etc.) suggests this phenomenon is not specific to network formation, so we should seek more

broadly applicable explanations.

Nevertheless, there is a long history of trying to explain heavy tails in terms of the

network formation process. The most popular approach is preferential attachment. In these

dynamic models, vertices arrive one at a time and form links with those already present.

If new links are biased towards well-connected vertices, then this bias reinforces itself after

each new arrival, and we end up with a small number of very high degree nodes. This

mechanism depends heavily on both sequential arrivals and permanent links. In contrast,

predictions based on pairwise or swap-proof stability implicitly allow links to change at any

ring structure—nodes are arranged in a circle and linked to their k nearest neighbors for some k—and then
rewires a small fraction of links. Their main results show that a small percentage of random links significantly
reduces average distances without meaningful changes in clustering.

21There is an active debate around whether degree distributions follow power-laws—see Broido and Clauset
(2019) and Voitalov et al. (2019) for recent contributions. Regardless of where one falls in this debate, it
remains undisputed that real degree distributions have far heavier tails than what the simplest random graph
models generate (e.g., Erdös-Rényi graphs).
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time following strategic incentives—these solution concepts yield fixed points for natural

adjustment dynamics (see Section 7.3). While each approach will have more or less appeal

depending on context, strategic models can capture a similar effect using different incentives.

If the benefit from linking with neighbor i is larger when i has more neighbors, then stable

graphs should resemble preferential attachment networks. I explicitly rule out such link

externalities here, but exploring other payoff specifications is a natural and important next

step for this research agenda.

7.2 Reinforcing Inequality

If higher types are both more desirable and more sociable, the ensuing hierarchical net-

works tend to reproduce the type ordering in unrelated interactions. Imagine, for instance,

that extraverted people are both more desired as friends and make more effort to form

friendships. Separately, suppose people enjoy community sports leagues more if their friends

join—athletic recreation exhibits complementarities. Even if introverts and extraverts have

similar preferences over athletic activities, the social networks that form will induce more

extraverts to participate, leading to inequality in health outcomes. Similar effects are likely

in other settings like education, career choice, or migration.

To formalize this idea, suppose players form a strong hierarchy due to exogenous char-

acteristics, and they subsequently play a network game of strategic complements. In the

network game, actions take values in a compact set S ⊆ R, and player i earns a payoff

ui(s) = v(si) +
∑
j∈Gi

g(si, sj),

in which g ≥ 0 is twice continuously differentiable, is increasing in its second argument, and

has a positive cross partial. Fixing the graph, such games always have minimal and maximal

Nash equilibria. Moreover, symmetry ensures that any differences in equilibrium actions and

36



payoffs arise due to players’ positions in the graph, not from idiosyncratic preferences.

Sadler (2022) introduces “weak centrality,” a measure that robustly predicts the order of

equilibrium actions in network games of strategic complements. In general, this centrality

measure only partially orders the vertices of a graph, but the order is total in overlapping

hierarchies—I reproduce the definition here.

Definition 8. Given a graph G = (V,E) and an ordered partition P = {V1, V2, ..., VK} of

V , the subset S ⊆ V dominates S ′ ⊆ V with respect to P if for each k = 1, 2, ..., K, we have

∣∣∣S ∩( K⋃
`=k

V`

)∣∣∣ ≥ ∣∣∣S ′ ∩( K⋃
`=k

V`

)∣∣∣.
That is, subset S contains at least as many vertices in set Vk or higher for every k. The graph

G is an overlapping hierarchy if we can find a partition P such that Gi ∪ {i} dominates

Gj ∪ {j} with respect to P whenever i is in a higher partition element than j.

A strong hierarchy is an overlapping hierarchy in which the corresponding partition P

is the collection of all singletons. Hence, weak centrality yields a total order on the set of

players that aligns with the hierarchy. Theorem 3 from Sadler (2022) then implies that,

in the highest and lowest Nash equilibria, players who are higher in the ranking must take

higher equilibrium actions. Since neighbors’ actions exert positive externalities, players who

are higher in the ranking also enjoy higher equilibrium payoffs. This finding highlights

one reason why hierarchies in one domain reproduce themselves in others. By identifying

incentives that bring about these networks, Theorem 3 in this paper can help pinpoint

conditions under which endogenous networks reinforce inequality.

7.3 Dynamic Foundations

When the mutual favorite property holds, swap-proof stability enjoys a particularly robust

learning foundation. In this section, I formalize two classes of better-response dynamics, one
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in which opportunities to change particular links arise over time, and one in which players

can periodically adjust their links. In either case, the mutual favorite property ensures

convergence to the unique swap-proof stable graph with probability one.

In the link adjustment dynamics, we draw a pair ij at random in each discrete

period t according to an arbitrary distribution with full support. If Gt is the graph at the

start of the period, and ij ∈ Gt, then Gt+1 = Gt − ij if either ui(Gt − ij) > ui(Gt) or

uj(Gt− ij) > uj(Gt)—we remove ij if doing so benefits either of the two players. If ij /∈ Gt,

we add it to the graph if doing so benefits both i and j, at least one strictly, allowing either

player to sever one other link if this is necessary to realize a benefit.22 Under these dynamics,

we get convergence to the unique swap-proof stable graph from any starting point.

Proposition 3. Suppose a network formation game has payoffs of the form (1) that sat-

isfy the mutual favorite property and no indifference. Given any initial graph G0, the link

adjustment dynamics always converge to the unique swap-proof stable graph.

Proof. Under our assumptions, Theorem 1 applies, so there is a unique swap-proof stable

graph, and by definition this is the only absorbing state of the Markov chain induced through

the link adjustment dynamics. Hence, we need only show that there is a positive probability

of getting to this state from any starting point. In the constructive proof of Theorem 1,

we enumerated the possible links i1j1, i2j2, ... so that ikjk was a mutual favorite among all

subsequent links. Starting from any G0, there is some positive probability that links are

selected in exactly this order. Following the construction in the earlier result, it should be

clear that, when going in this order, each link will be added to the graph if and only if it is

in the unique swap-proof stable graph. When we consider link ikjk, the only difference from

our original construction is that the graph may already contain some later links from the

list, but since ikjk is a mutual favorite in this set, if adding it is beneficial without those later

22More precisely, if ui(Gt + ij) ≥ ui(Gt), player i does not sever another link—player i severs a link to the
third player k only if ui(Gt + ij) < ui(Gt) but ui(Gt + ij − ik) ≥ ui(Gt). If there are multiple such k, we
make an arbitrary selection of which link to sever.
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links, we can still add it through an improving swap that deletes some later links. Hence,

there is a positive probability ε of getting to the absorbing state from any starting point,

and after K n(n−1)
2

periods, the probability that we are not yet at the absorbing state is no

more than (1− ε)K .

If players choose which links to adjust, then some links may not have any chance to

change in a given period because there are better improvements available to the players

involved. Nevertheless, a similar argument shows that the following player adjustment

dynamics always converge. Instead of choosing a link in each period, we now choose a

player i in each period t, drawn from an arbitrary distribution with full support. This player

makes the most profitable adjustment available to her: player i either severs a link, proposes

a link to another player j, or proposes a swap that adds a link to j and severs her link with

k. If i proposes either an addition or a swap to j, we assume that j accepts as long as she

weakly benefits—either from adding the link or from swapping a neighbor of her own—and

we assume that i only makes proposals to players who will accept.

Proposition 4. Suppose a network formation game has payoffs of the form (1) that satisfy

the mutual favorite property and no indifference. Given any initial graph G0, the player

adjustment dynamics always converge to the unique swap-proof stable graph.

Proof. Again, the unique swap-proof stable graph is the only absorbing state for these dy-

namics, so we need only show that we have a positive probability of getting there from any

starting point. Enumerating the possible links i1j1, i2j2, ... as before, we can see that if the

graph Gt ever matches the swap-proof stable graph G∗ on the first K links, it will continue

to match on the first K links in all subsequent periods—if Gt matches G∗ on the first K

links, then by construction there is no way for the players to benefit from adding link ikjk

for k ≤ K if this link is not in the graph, and if a player i could benefit from deleting one of

these links, this is only because she has later links that would be more beneficial to delete.
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Moreover, after selecting players iK+1 and jK+1 enough times, the graph Gt must eventually

match G∗ on link K + 1—if this link is missing in G∗, one of the two players will delete it

after deleting all links that appear later in the list, and if this link is present in G∗ it will

be the first link the two players add after exhausting more profitiable deletions. Hence, the

graph Gt must eventually match G∗ on all links.

8 Final Remarks

The literature on network formation thus far lacks a systematic treatment of how different

payoff assumptions affect stable graphs. This paper’s analysis based on separable benefits

and ordinal rankings is a necessary first step. Even in this simple setting, a small refinement

of pairwise stability can explain several stylized facts—homophily and clustering reliably

appear—and we obtain sharp predictions about network structures under interpretable con-

ditions. Beyond these specific conditions, the mutual favorite property offers a powerful

tool. We get unique predictions in a large family of games covering many natural examples,

and this result is robust to variations on the basic model. Moreover, swap-proofness high-

lights the neglected connection between network formation and matching, suggesting a more

unified approach.

The limitations of my analysis present opportunities for future authors. Allowing ex-

ternalities across links is clearly important in many settings—for instance, friends socialize

in groups, which might make it easier to maintain relationships supported through mutual

friends—and we might hope to find conditions other than separability that permit a clean

characterization of stable graphs. A theorist might wonder exactly how tight the existence

and uniqueness result is, and how far it applies beyond separable payoffs. As already noted

in Section 5, combining strategic network formation with constraints on what links are fea-
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sible may allow us to apply our tools to a much wider range of settings. Finding ways to

infer preferences from network is data is important for practical applications, and the model

in Section 6 suggests a place to start. I am hopeful that at least some of these directions

will pique others’ curiosity.
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A Online Appendix

A.1 The Importance of No Indifference

While symmetry often simplifies network formation models, the opposite is true here. The

no-indifference condition, which implies distinct types and strict preferences, is essential for

both parts of Theorem 1. Suppose we have 3 identical players and every link yields one unit

of benefit to each player. If a single link is always free, but a second link costs 2 on the

margin, then no swap-proof stable graph exists. To see why, first note that no graph with

two or more links is pairwise stable since any player with two links has a strict incentive to

delete one. Similarly, the empty graph cannot be stable since any pair has a strict incentive

to form a link. A graph with a single link is pairwise stable, but it cannot be swap-proof:

one of the two linked players can always drop her neighbor and add a link to the isolated

player. The player who severs a link is indifferent, but the formerly isolated player strictly

gains, so this is an improving swap. Figure 4 illustrates.

Figure 4: Payoffs for three identical players with g(t, t) = 1 and c(0) = c(1) = 0 < 2 = c(2).
Each graph can be obtained from the other two via an improving swap.

Even if existence is not an issue, we need strict preferences for uniqueness. Looking at the

same game with 4 identical players (see Figure 5), we find that any graph in which players

are linked in two pairs is pairwise stable and swap-proof. Indifferences create multiplicity.

i



Figure 5: Four identical players with g(t, t) = 1 and c(1) = 0 < 2 = c(2). All three graphs
are pairwise stable and swap-proof.

A.2 Relationship to Other Acyclicity Conditions

The matching literature has identified acyclicity condtions that guarantee unique stable

matchings in two-sided markets. In a marriage market, Romero-Medina and Triossi (2013)

show that the absence of “simultaneous cycles” ensures a unique stable matching. A simul-

taneous cycle is a set of men m1,m2, ...,mK together with a set of women w1, w2, ..., wK such

that each man k prefers woman k over woman k − 1, and each woman k prefers man k + 1

over man k (mod K). To represent a two-sided market in our setting, partition types into

two sets, and make links between types in the same set have negative value. If we adjust

Definition 2 to require a mutual favorite only in sets E such that every edge includes one

player from each side of the market, our condition is equivalent to no simultaneous cycles.

The analogous condition for a one-sided market forbids cycles of players i1, i2, ..., iK = i1

such that each player ik prefers linking with ik+1 over ik−1 (mod K). This is exactly the

mutual favorite property. If such a cycle exists, then the corresponding set of links fails to

include a mutual favorite. Conversely, if the mutual favorite property fails for a set of edges

E, we can readily construct such a cycle from edges in E.

Romero-Medina and Triossi (2021) extend their own work to two-sided, many-to-many

matching markets. In particular, they show that if one side of the market has acyclic

preferences over the other side, then there is a unique stable matching. Partitioning players

into firms f1, f2, ... and workers w1, w2, ..., they require that there is no cycle of workers
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w1, w2, ..., wK , wK+1 = w1, together with a corresponding set of firms f1, f2, ..., fK , such that

firm k always prefers worker k + 1 (mod K) over worker k. If we again modify the mutual

favorite property, applying it only to sets of edges that link firms to workers, then this

one-sided acyclicity implies the mutual favorite property.

To see why, take any set of edges E that link firms to workers, and we can find a mutual

favorite as follows. Pick any firm f1 at the end of an edge in E, and find the worker w1 that f1

prefers most among all options within the set of edges E. That is, worker w1 maximizes the

firm’s preferences among the set {w : f1w ∈ E}. If f1 similarly maximizes the preferences

of w1, then we are done. If not, write f2 for the firm that similarly maximizes the preferences

of w1. Again, if w1 is the favorite of f2 among options in E, then we are done, and otherwise

we keep going. At some point, the sequence f1, w1, f2, w2, ... must loop back on itself. If

the length of this cycle is greater than 2, then we have a cycle that violates the one-sided

acyclicity condition. The only remaining possibility is that we have found a mutual favorite.

A.3 Games on Endogenous Networks

The structural results from Section 4 easily adapt to network games with network forma-

tion, in which players simultaneously form a network and take strategic actions, and payoffs

hinge on the interaction between the two (Sadler and Golub, 2022). Consider a finite set

of players N , a set of actions Si for each player i ∈ N , and a payoff function ui(G, s) for

each player i ∈ N . Payoffs take as input both a graph G with vertex set N and a profile

of actions s ∈
∏

i∈N Si for the players. Following the earlier paper, an outcome (G, s) is

pairwise stable if s is a Nash equilibrium, holding G fixed, and G is pairwise stable, holding

s fixed. Applying definition 1 from the present paper, I call a pairwise stable outcome (G, s)

swap proof if G is swap proof, holding s fixed.
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Suppose a network game with network formation has payoffs

ui(G, s) = vi(s) +
∑
j∈Gi

g(si, sj)− c(di), (3)

in which c is increasing and convex. The term vi(s) describes idiosyncratic action incentives,

and the common g determines linking incentives. Ignoring the first term, this is exactly the

payoffs (1), with actions replacing types, and our earlier results apply without modification.

The desirability and sociability orders now have natural interpretations. Following Sadler

and Golub (2022), I say the game has positive (negative) spillovers if higher actions make for

more (less) attractive neighbors—that is, if g is increasing (decreasing) in its second argu-

ment. Similarly, the game has action–link complements (substitutes) if taking a higher action

makes a player more (less) inclined to form links—that is, if g is increasing (decreasing) in its

first argument. Positive spillovers and link–action complements, or negative spillovers and

link–action substitutes, imply that a swap-proof stable outcome involves a strong hiearchy.

In the other two cases, stability entails ordered overlapping cliques.

While Theorem 1 yields a unique swap-proof stable graph given a generic action profile,

ensuring the existence of a swap-proof stable outcome (G, s) is more delicate for two reasons.

First, the interplay between actions and links could produce an improving cycle (e.g., a

change in actions creates a profitable deviation in links, which in turn creates a profitable

deviation in actions, etc.). Second, multiple players might take the same equilibrium action,

creating troublesome indifferences. We can likely manage the latter through assumptions on

idiosyncratic incentives, or a small adjustment to the solution concept, but the first issue

demands an in-depth treatment.
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A.4 Primitive Payoff Properties

While expositionally convenient, the payoffs (1) assume more than we need for the main

findings to hold. I present two new definitions to capture the essence of increasing marginal

costs and bilateral linking incentives. Analogs of each of our Theorems then follow from

essentially the same arguments. Write

∆ijui(G) = ui(G+ ij)− ui(G− ij)

for player i’s marginal value of a link with player j—note that ∆ijui(G) = ∆ijui(G+ ij) =

∆ijui(G−ij). In the following, I write a graph G as (Gi, G−i) to distinguish the neighborhood

Gi of player i from the collection of all edges G−i that do not involve player i.

Definition 9. In a network formation game, payoffs exhibit no externalities if ui(Gi, G−i)

does not depend on G−i. Payoffs are quasi-concave in own links if

∆ijui(Gi, G−i) ≥ (>)0 =⇒ ∆ijui(G
′
i, G−i) ≥ (>)0

whenever G′i ⊆ Gi. Payoffs are rank-consistent if for every player i, whenever there exists

a pair j, k, and a graph G with j /∈ Gi and k ∈ Gi, such that

ui(G+ ij − ik) > ui(G),

we also have

ui(G
′ + ij − ik) > ui(G

′)

for every other graph G′ with j /∈ G′i and k ∈ G′i.

No externalities means that a player’s payoff depends only on the links she has, not on

other links in the network. Concavity in own-links says that additional links have decreasing
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marginal returns.23 Rank-consistency ensures that a player’s ranking of potential partners

does not change with the graph. Together with no externalities, this means that linking

benefits are fundamentally bilateral: the value of a link to each player depends only on

attributes of those two players.24 The payoffs (1) clearly satisfy both conditions, but other

natural formulations fit as well.25 Throughout this subsection, I assume payoffs are quasi-

concave in own-links and self-consistent.

Rank-consistency implies that each player i has a fixed preference order �i over potential

neighbors—I write j �i k if we ever have ui(G + ij − ik) > ui(G) for some G with j /∈ Gi

and k ∈ Gi.
26 Following the analysis of Section 3, I say that ij ∈ E is a mutual favorite

for E if j maximizes �i among all k such that ik ∈ E, and likewise i maximizes �j among

all ` such that j` ∈ E. As before, the game has the mutual favorite property if every set of

edges E contains a mutual favorite. As in Section 3, the mutual favorite property together

with no indifference ensures the existence of a unique swap-proof stable graph.27

Proposition 5. Suppose payoffs exhibit no externalities, rank-consistency, and quasi-concavity

in own links. If there are no indifferences, and the game has the mutual favorite property,

then there exists a unique swap-proof stable graph.

Proof. The proof is substantively identical to that given for Theorem 1, and I omit it.

We can similarly extend Theorems 2 and 3 using analogous order conditions.

23An equivalent definition appears in Hellmann (2013).
24This does exclude some classic examples like the “connections model” and the “coauthor model” of

Jackson and Wolinsky (1996), in which linking incentives explicitly depend on more complex interactions.
25e.g., benefits that are a concave function of a linear aggregate together with either linear or convex costs.
26Note the definition precludes having both j �i k and k �i j, and we can write j ∼i k if neither of these

holds. Moreover, it should be clear that this relation is transitive—given a cycle j1 �i j2 �i ... �i jK �i j1,
consider the graph that is empty except for one link ijk, and a cycle of improving swaps then implies that
ui(G) > ui(G) for some graph, a contradiction.

27No indifference here means that ∆ijui(G) 6= 0 for all i, j, and G, and that ui(G + ij − ik) 6= ui(G) for
all i, j, k and all graphs G with j /∈ Gi and k ∈ Gi.
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Definition 10. Payoffs are consistent if, whenever there exists three players i, k, and `,

and a graph G with k /∈ Gi and ` ∈ Gi such that

ui(G+ ik − i`) > ui(G)

then we also have

uj(G
′ + jk − j`) > uj(G

′)

for any player j and any graph G′ with k /∈ G′ and ` ∈ G′. That is, if any player ever

benefits from swapping k for `, then all players always benefit from swapping k for `, and we

say k is more desirable than `.

Consistency ensures that players share a common ranking of who is a desirable neighbor—

the orders �i are identical for all players. Under this assumption, the conclusion of Theorem

2 holds via the same argument: there is a bound on the distance between any pair of

neighbors, and this bound is invariant to the population size. Although the argument is the

same, this meaningfully extends our earlier findings. The payoffs (1) require every player to

have the same convex cost function, but linking costs that vary across players would still

result in payoffs that satisfy definition 10.

Proposition 6. Suppose payoffs exhibit no externalities, no indifference, consistency, and

quasi-concavity in own links, and G is a swap-proof stable graph. If there exists a bound d

such that 1 ≤ di ≤ d for each player i, then |i− j| ≤
⌈
d
2

⌉(⌊
d
2

⌋
+ 1
)

for any ij ∈ G.

Proof. The argument is substantively identical to that of Theorem 2, and I omit it.

The structures that Theorem 3 predicts require the strongest assumptions, depending on

both consistent payoffs and a sociability order. The following definition provides the last

ingredient we need to state our extension.
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Definition 11. Player i is more sociable than player j if for any third player k, and any

graph G with jk, ik /∈ G, we have

∆jkuj(G) ≥ (>)0 =⇒ ∆ikui(G) ≥ (>)0

whenever di ≤ dj.

Proposition 7. Suppose payoffs exhibit no externalities, no indifference, consistency, and

quasi-concavity in own links, and G is a swap-proof stable graph. If i is more sociable than j

whenever i is more desirable than j, then G is a strong hierarchy. If j is more sociable than

i whenever i is more desirable than j, then G consists of ordered overlapping cliques.

Proof. This argument is substantively identical to that of Theorem 3, and I omit it.
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