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Abstract

This paper provides the uniform asymptotic theory for local projection (LP) regres-

sion when the true lag order of the model is unknown, possibly infinity. The theory

allows for various persistence levels of the data, growing response horizons, and general

conditionally heteroskedastic shocks. Based on the theory, we make two contributions.

First, we show that LPs are semiparametrically effi cient under classical assumptions on

data and horizons if the controlled lag order diverges. Thus the commonly perceived

effi ciency loss of running LPs is asymptotically negligible with many controls. Second,

we propose LP-based inferences for (individual and cumulated) impulse responses with

robustness properties not shared by other existing methods. Inference methods using

two different standard errors are considered, and neither involves HAR-type correction.

The uniform validity for the first method depends on a zero fourth moment condition on

shocks, while the validity for the second holds more generally for martingale-difference

heteroskedastic shocks.
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1 Introduction

Impulse response analysis is a major tool in applied macroeconomic analysis. In this paper,

we aim to develop statistical inference methods on impulse responses which are robust to

model specification, model parameters, the range of propagation horizons under investiga-

tion, and the dependence structure of the shock process. Thus the procedures developed

can accommodate stylized features in macro data such as stochastic trends, persistence,

long-range dependence, and volatility clustering.

Our approach is based on local projections (LPs) (Jordà, 2005, Dufour and Renault,

1998). ConsiderK endogenous variables of interest, stacked in the vector yt, and the primary

interest is in the responses of its first entry y1t to various economic shocks after h propagation

horizons, where h ≥ 1. These responses are collected in the K× 1 vector β1(h). The method

of LP runs the regression

y1,t+h = β1(h)′yt +

p−1∑
`=1

θ1`(h)′yt−` + η1t(h), (1)

for a given integer p ≥ 1, where η1t(h) is the regression error. The number of controlled

lags p − 1 needs to be determined. A common method is to apply some data-dependent

information criterion to select p for the horizon-one regression (h = 1), and then use the

same p for regressions at all other horizons.

Our robust inference is based on a new standard error of the ordinary least squares (OLS)

estimator of the LP regression (1). The new standard error is constructed via first partialling

out controls and then estimating the variance of the martingale-transformed (effective) re-

gression score. The estimated score variance is simply a sum of squares, thus does not require

the selection of a tuning parameter as usually needed in the long-run variance estimation,

even that original score contributions (with or without partialling out) are in general serially

correlated (for h ≥ 2). In the paper we establish uniform validity of the inference procedure

robust to data features mentioned above under the vector autoregression (VAR) model with
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an unknown and potentially infinite number of lags.

Robust inference of impulse responses which are potentially generated from a VAR(∞)
process is new. Existing literature which allows models with infinitely many lags (e.g. Inoue

and Kilian, 2002, Chang and Sakata, 2007, Jordà and Kozicki, 2011, Kilian and Lütke-

pohl, 2017, chapter 12, and Lusompa, 2022) mostly focuses on stationary models and fixed

horizons. Leaving the true lag order unrestricted in the VAR model has been argued as

fundamentally important in the modern empirical macro literature (Kilian and Lütkepohl,

2017, chapter 6, Nakamura and Steinsson, 2018).

When the VARmodel is (plausibly) viewed as an approximation of the unknown true data

generating process (DGP), a large model lag order is often used. Even when the true DGP

has a finite number of lags, a conservative (large) model lag order is recommended for robust

inference; see Montiel Olea and Plagborg-Møller (2021). When the true DGP is VAR(∞), the
model order is typically required in theory to diverge (at an appropriate rate) for reasonable

model approximation quality. A suffi ciently large model order has an important implication.

Our analysis shows that when the model order diverges, the LP estimator of the impulse

response is semiparametrically effi cient, under classical assumptions on data and design. The

result extends those of Plagborg-Møller and Wolf (2021), who show that iterative model-

implied and LP estimators have the same population estimand and probability limit under

VAR(∞) model, to the equivalence of their asymptotic distributions. The equivalence result
is important to motivate our consideration of LP for the inference purpose as the effi ciency

loss is (asymptotically) negligible, in contrast to the common wisdom that LP is ineffi cient

under the finite small-order VAR model.

We now discuss recent work in the literature which is closely related. Montiel Olea and

Plagborg-Møller (2021, MOPM hereinafter), which clearly motivates the current study, is

concerned about robust inference for local projection regression under the finite-order VAR

model. Other than assuming the model order to be finite and known, a fundamental as-

sumption underlying their uniform validity result is the mean independence of the shock

process, which we relax in the current paper when developing the new theory and methods.

As the authors mentioned, “... What matters is that we include enough control variables

so that the effective regressor of interest approximately satisfies the conditional mean in-

dependence condition”, (MOPM, p.1809). The current paper thus contributes to the line
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of work in the following five aspects, allowance for a more general data generating process

(with potentially infinite lags), a more flexible controlled lag order (which may diverge) in

the LP regression, a new asymptotic theory for general martingale difference shocks, a new

standard error (the consistency of which does not require mean-independent shocks), and a

unified inferential framework which covers both individual and cumulated impulse responses

(thereby permitting higher-order integrated data via differencing).

Our paper is complementary to the literature on robust model-implied inference for im-

pulse responses (Mikusheva, 2012, Inoue and Kilian, 2020, and references therein). These

methods, mostly developed under the univariate autoregression (AR) model with finite and

known order, specify a dynamic model (and sometime estimate model parameters) and draw

inference for impulse responses (as a function of model parameters) based on the likelihood

principle or the delta method. Compared with model-implied inference methods in the liter-

ature, the advantage of our methods lies in the following aspects, the validity uniform over a

larger class of models and larger spaces of model parameters and horizons, accommodation

of more general shock processes, and extendability (in both theory and computational fea-

sibility) to multivariate models. For example, Mikusheva (2012) focuses on the univariate

model, and considers the extension to the VAR model but only allows for a unit root for

one endogenous variable. Her uniformity results allow for heteroskedastic shocks but only

when data are highly persistent (i.e. under the local-to-unity model). Under the univariate

finite-order AR model, the methods of Inoue and Kilian (2020) require some rank condition

on the parameter space (see also Dufour, et al., 2021), which we dispense with. They mainly

focus on a fixed horizon and allow the horizon to grow but only under the local-to-unity

model.

In a recent working paper, Lusompa (2022) proposed an alternative LP estimator utilizing

the structure of the LP regression error. The paper discusses the effi ciency comparison with

the standard LP estimator, and shows that in a simplified setting of AR(1) model, the

alternative estimator is asymptotically more effi cient across horizons in general. In the

current paper we show that in a similar simple setting, the effi ciency gain does not carry

over if a suffi ciently large lag order is used; the alternative estimator has the same asymptotic

distribution with the LP estimator. Importantly, the inference discussed in Lusompa (2022)

requires a much stronger set of assumptions: stationarity, fixed horizons, model lag order with

a more restricted rate. It thus remains unclear regarding the uniform validity of inference
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based on the alternative estimator under general conditions and parameter spaces considered

in the current paper.

The rest of the paper is organized as follows. In Section 2, we introduce the inferential

framework, and assumptions on the data generating process, the parameter space, and the

approximation model. These assumptions are illustrated via a potentially highly persistent

VARMA (vector autoregression and moving average) model. Section 3 gives the uniform

asymptotic theory for the LP estimator and discusses a few implications especially on semi-

parametric effi ciency. In Section 4 we prove the consistency of two different standard errors,

neither of which involves selection of a tuning parameter as in the usual long run variance

estimation. The new standard error proposed in the paper is shown to enjoy robust prop-

erties to the form of dynamic dependence of shocks. Another potential advantage of the

new standard error regarding the lag order flexibility under finite-order VAR model is also

discussed. Simulation results are presented in Section 5 and concluding remarks in Section

6. In Appendices A and B we sketch the proofs of some main results. Technical details

and additional results are provided in the on-line Supplement to the paper (available at the

author’s website).

A word on notations. For a matrix (vector, scalar) x, we use |x| to denote its Frobenius
norm, i.e. |x| = [trace(x′x)]1/2. We use C with a decoration (C1, Cu, C

′, Cw, etc.) to denote

a positive constant, which does not depend on the model coeffi cients {a1, a2, · · · , }, the LP
lag order p, the horizon h, or the sample size n. For a square matrix D, denote λmin(D)

as its smallest eigenvalue, and λmax(D) as its spectral norm (i.e. the largest eigenvalue in

magnitude). Denote diag(x1, · · · , xK) as the block diagonal matrix with x1, · · · , xK on the
diagonal. We use ⊗ to denote the Kronecker product of two matrices, and vec(D) to denote

the vectorization vector of the matrix D. Write the K ×K identity matrix as IK .

2 Data generating process and parameter space

Consider the K-dimensional vector autoregression process of infinite order (VAR(∞)):

yt
K×1

=

∞∑
j=1

ajyt−j + ut, (2)
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where ut is a serially uncorrelated shock process. Initial conditions are set as yt = 0, for

t ≤ 0. In the theoretical development, we assume that yt contains no deterministic part,

but in implementation we always include an intercept in the regression, e.g. (1) or (4); see

Section 5 of the paper, and Section S6 of the Supplement.

Write the data generating process (DGP) (2) as a(L)yt = ut, where a(L) = IK−
∑∞

j=1 ajL
j

and L is the lag operator such that Lyt = yt−1. Under such DGP, the horizon-h impulse

response matrix β(h) = [β1(h), · · · , βK(h)]′ is the coeffi cient of ut−h in the formal vector

moving average (VMA(∞)) representation of the model (2) (obtained by formal inversion of
a(L)yt = ut), yt =

∑∞
h=0 β(h)ut−h, with β(0) = IK . Focusing on the responses of y1t (to K

shocks in ut), the parameter of interest in this paper is defined as

β1(h, µ) =
h∑
j=1

µjβ1(j),

for h ≥ 1, where µ = (µ1, · · · , µh)′ is an h-dimensional nonzero vector of known constants.
The inferential framework developed below applies to linear combinations of all impulse

responses (IRs) up to the horizon h, including individual and cumulative ones, corresponding

to µ set as µIR = (0, · · · , 0, 1)′ and µCIR = (1, · · · , 1)′, respectively. To reconcile with earlier

notations, we write β1(h, µIR) simply as β1(h). In what follows we will use this notational

convention by implicitly imposing µ = µIR whenever we drop the argument µ, e.g. in β1(h, µ),

π1(h, µ) and y1t(h, µ), etc.

Cumulative level responses can be interesting per se (long-run responses of the economy).

Cumulative responses recover orginal level responses if the response variable of interest is

transformed into differences (e.g. growth rates, returns); see e.g. Lunsford (2020) for such

applications.

We first define the parameter space A of coeffi cients in the model (2), where A = {a ∈
R∞ : a = vec(a1, a2, · · · )} is a subset in the R∞ space. We introduce the following scalar

quantity, which eventually determines the convergence rate,

πk(h, µ) =

h∑
i=1

|ϕki|2,

for k = 1, · · · , K, where ϕki =
∑h

j=i µjβk(j − i). The form of ϕki will become clear in the
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population local projection regression (3) introduced below. The restrictions on coeffi cient

matrices {aj : j ≥ 1} in the model (2) are imposed through conditions on impulse response
matrices, as stated in the following Assumption 1.

Assumption 1. The following is true for k = 1, · · · , K and given µ.

(i) supa∈A supi≥0 |βk(i)| ≤ C1.

(ii) supa∈A suph≥1
|βk(h,µ)|2+

∑h
i=1 |ϕki|

πk(h,µ)
≤ C2.

(iii) supa∈A supN≥2

∑N−1
i=1 |βk(i)− βk(i− 1)| ≤ C3.

Assumption 1 is a high-level one. For illustration, if the data generating process follows

scalar AR(1), the assumption requires |a1| ≤ 1. For the AR(2) process, the assumption is

satisfied via reparameterization a(L) = 1−a1L−a2L2 = (1− bL)(1−ρL), where |ρ| ≤ 1 and

|b| ≤ 1− ε, for a constant ε ∈ (0, 1]. Assumption 1 thus rules out explosive roots (violating

(i) and (ii)) and integration of order larger than one (violating (iii)) for the data yt. If some

response variables are potentially integrated of order two, taking differences (to form yt) is

necessary to apply our framework. If this is the case, setting µ = µCIR will recover level

responses of original variables. From a technical point of view, the conditions in Assumption

1 are especially useful in establishing uniform bounds for moments in the asymptotic analysis.

Write y1t(h, µ) =
∑h

j=1 µjy1,t+j. Under the model (2), by recursive substitution we obtain

the following LP(∞) form (local projection with infinite lags), with the focus on responses

of the first entry of yt,

y1t(h, µ) = β1(h, µ)′yt +

∞∑
`=1

θ1`(h, µ)′yt−` + ξ1t(h, µ), (3)

where ξ1t(h, µ) is the LP(∞) regression error,

ξ1t(h, µ) =

h∑
i=1

ϕ′1iut+i.
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To estimate β1(h, µ), we run the truncated regression

y1t(h, µ) = β1(h, µ)′yt +

p−1∑
`=1

θ1`(h, µ)′yt−` + η1t(h, µ), (4)

for a chosen model order p. The LP(p) regression error η1t(h, µ) in (4) thus takes the form

η1t(h, µ) =
∑∞

`=p θ1`(h, µ)′yt−` + ξ1t(h, µ).

Our inferential framework is valid for a range of model orders p, such that p ≤ p ≤ p,

where p and p are two positive integers such that the following Assumption 2 is satisfied. On

top of controlling the bounds on p, Assumption 2 further restricts the coeffi cient parameter

space. While Assumption 1 imposes restrictions on the behavior of all aj, Assumption 2 is

only concerned about tail coeffi cients aj, for j ≥ p. For the horizon h in (4), we consider

the range 1 ≤ h ≤ h, where the upper bound h may grow with the sample size. Denote

µ = sup1≤h≤h |µ|1, where we write the L1-norm as |µ|1 =
∑h

j=1 |µj|.

Assumption 2. (i). hµ2p2/n→ 0.

(ii). limn→∞ supa∈A pn
1/2
∑∞

j=1 j|ap−1+j| = 0.

Assumption 2(i) restricts the upper bounds p and h. There is a tension between the

ranges of model orders and response horizons; the upper bound on p is tighter if a wider

range of horizons is allowed. Given such an upper bound p, Assumption 2(ii) restricts the

lower bound p; p should be suffi ciently large such that the remote sum supa∈A
∑∞

j=1 j|ap−1+j|
shrinks to zero faster than p−1n−1/2. If the data generating process involves infinite lags, these

conditions require p→∞ so that the misspecification bias (via truncation) diminishes.

Assumption 2 (ii) is stated for interpretation transparency rather than being the weakest

possible; see the weaker Assumption 2B in the Supplement which is suffi cient for asymptotic

results developed below. To illustrate Assumptions 1 and 2, consider the following example.

Example. Suppose that yt follows the vector autoregression and moving average model
with finite orders q + 1 and r (VARMA(q + 1, r)):

Q(L)yt = d(L)ut, (5)
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where Q(L) = b(L)(IK − ρL) and d(L) = IK −
∑r

j=1 djL
j, with ρ = diag{ρ1, · · · , ρK},

ρk ∈ [−1, 1] for each 1 ≤ k ≤ K, and b(L) = IK −
∑q

j=1 bjL
j. Suppose λmax(B) ≤ 1− εb and

λmax(D) ≤ 1 − εd, for 0 < εb < 1 and 0 < εd < 1, where B and D are companion matrices

(see Section S4 in the Supplement for definitions) of VARMA coeffi cients {b1, · · · , bq} and
{d1, · · · , dr}, respectively.

The following proposition shows that this type of VARMA models can be subsumed

within the class of models permitted by our Assumptions 1 and 2.

Proposition 1. Suppose that yt follows the VARMA process defined in the Example.
(i). Assumption 1 holds.

(ii). Suppose that yt does not have a finite-order VAR form. If

pn1/2(1− εd)p → 0, (6)

then Assumption 2 holds.

Note that for the VARMA process defined in the Example the condition (6) requires the

lower bound p to diverge, but it can diverge as slowly as log n; see the remark following the

proof of Proposition 1 in the Supplement.

If the data yt follow the VAR process with a finite number ptrue of lags, with aptrue 6= 0 and

aj = 0 for j ≥ ptrue + 1, where the true lag order ptrue is not necessarily known, Assumption

2(ii) is trivially satisfied if p ≥ ptrue + 1.

We next state assumptions on the shock process ut.

Assumption 3. (i) E(ut|us, s ≤ t− 1) = 0, almost surely (a.s.).

(ii). ut is covariance-stationary and strong mixing with mixing numbers {α(j) : j ≥ 1}.
There exist ζ > 2, ε > 1, and Cα < ∞, such that α(j) ≤ Cαj

−2ζε/(ζ−2), for all j ≥ 1. [In

other words, ut is mixing of size −2ζ/(ζ − 2)].

(iii). λmin(E(utu
′
t|us, s ≤ t− 1)) ≥ Cλ > 0, a.s.

(iv). For ζ defined in (ii), E|ut|8ζ ≤ Cu <∞.

In Assumption 3, the condition (i) assumes that ut is a martingale difference sequence
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(MDS), and in other words, the dynamic model (2) for the conditional expectation of yt is

correctly specified. The mixing conditions in (ii) are regularity conditions, and they are only

required in the proofs to establish uniform bounds for moments of sums (e.g. in proving the

law of large numbers for squared sequences). These conditions are stronger than necessary.

An alternative method is to directly impose assumptions on summability of cross-moments of

the sequence {ut}.Wefind that the approach based on mixing conditions is more intuitive and
makes proofs relatively transparent. The mixing conditions are widely used in the literature

to restrict the higher order serial dependence of time series, e.g. recently by Andrews and

Guggenberger (2012, 2014). These conditions impose relatively weak restrictions on the

variance dynamics, e.g. those generated by stationary GARCH and stochastic volatility

models; see Carrasco and Chen (2002). The condition (iii) rules out singular conditional

variances. The condition (iv) on existence of moments of ut can be substantially weakened

if stronger assumptions are imposed on the serial dependence of ut, e.g. mean independence

or conditional homoskedasticity.

3 Local projection regression

We now provide details of statistical inference. Throughout the paper, the time series data

available to the econometrician are indexed by t = 1, · · · , n. Assume that h and p are small
enough so that n ≥ 3h+ p− 3. The LP estimator of β1(h, µ), β̂1(h, µ), is obtained by OLS

(ordinary least squares) of (4) (for t = p, · · · , n− h).1

By the partialling-out theorem,

β̂1(h, µ) = [
n−h∑
t=p

ût(h)ût(h)′]−1

n−h∑
t=p

ût(h)y1t(h, µ), (7)

where ût(h) is the residualized focal regressor yt, obtained as OLS residuals of the VAR(p−1)

regression using the data {yt : t = p, · · · , n− h}.
The crux of the development of uniform distributional theory for β̂1(h, µ) lies in the

1To estimate the cumulated response at the horizon h, empirical researchers can adopt the multiple-step
method by running local projection regressions for all horizons up to h and then summing these estimates.
For this method each regression uses a different sample size; the sample size reduces by one as the horizon
increases by one. Our method based on the one-step regression (4) is asymptotically equivalent to the
multi-step method and is neater for inference purpose.
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fact that the effective regressor ût(h) asymptotically recovers the true shock ut, as p → ∞
(equivalently, the controlled lag order p − 1 → ∞) at an appropriate rate, so that the
inference based on the estimator β̂1(h, µ) is not asymptotically affected by the persistence

level of the data yt. This observation was made by MOPM, under the finite-order VAR(ptrue)

model, who achieved such robustness via residualization by proposing the lag-augmented LP

regression (i.e. setting p = ptrue + 1).

To study the asymptotic properties, replacing the focal regressor yt in the LP(∞) regres-
sion (3) with the expression in the model (2), we can write

y1t(h, µ) = β1(h, µ)′ut +
∞∑
`=1

γ
1`

(h, µ)′yt−` + ξ1t(h, µ), (8)

where γ
1`

(h, µ)′ = θ1`(h, µ)′ + β1(h, µ)′a`. Combining (7) and (8) and applying the least

squares algebra give that

β̂1(h, µ)− β1(h, µ) = [
n−h∑
t=p

ût(h)ût(h)′]−1

n−h∑
t=p

ût(h)ψ1t(h, µ), (9)

where ψ1t(h, µ) =
∑∞

`=p γ1`(h, µ)′yt−` + ξ1t(h, µ).

Before stating the main theorem of the paper, we impose the following assumption.

Assumption 4 is similar to a technical assumption used in MOPM (their assumption 3), who

argued as necessary for uniform inference results.2

Assumption 4. Let X̃t−1(1) = yt−1 if p = 1, and X̃t−1(p) = (y′t−1,∆y
′
t−1, · · · ,∆y′t−p+1)′

if p ≥ 2, where ∆yt = yt − yt−1. Denote πk(n) =
∑n−1

i=0 |βk(i)|2, for k = 1, · · · , K, and
Π(n) = diag{π1(n), · · · , πK(n)}. Let Υn(p) = (n− p)1/2diag(Π(n)1/2, IK , · · · , IK︸ ︷︷ ︸

p−1 times

). Then

lim
M→∞

lim
n→∞

sup
p≤p≤p

sup
a∈A

P
(
λmin

(
Υ−1
n (p)

∑n
t=p+1 X̃t−1(p)X̃ ′t−1(p)Υ−1

n (p)
)
≥ 1/M

)
= 1.

We now establish the asymptotic normality of ν ′1β̂1(h, µ), where ν1 is a known K × 1

vector such that |ν1| 6= 0. Although we allow drifting sequences in the parameter space and

2See also Montiel Olea and Plagborg-Møller (2022).
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allow the horizon and model order to increase with n, for notational simplicity we do not

write ai, p, or h explicitly as functions of n.

Theorem 1. Let π1(h, µ) =
∑h

i=1 |ϕ1i|2, where ϕ1i =
∑h

j=i µjβ1(j − i), and

V = ν ′1Σ−1Var
(

(n− h− p+ 1)−1
∑n−h

t=p utξ1t(h, µ)
)

Σ−1ν1 > 0,

where Σ = Eutu
′
t > 0. Suppose that Assumptions 1, 2, 3 and 4 hold. Then

lim
n→∞

sup
x∈R

sup
p≤p≤p

sup
1≤h≤h

sup
a∈A

∣∣∣P(V −1/2[ν ′1β̂1(h, µ)− ν ′1β1(h, µ)] ≤ x
)
− Φ(x)

∣∣∣ = 0, (10)

where Φ(·) is the standard normal cumulative distribution function. Moveover,

CV ≤ π1(h, µ)−1(n− h− p+ 1)V ≤ CV , (11)

for two positive constants CV and CV .

Remark 1 (Convergence rate). The pointwise convergence rate is given by π1(h, µ)−1/2n1/2,

which depends on the persistence level of data, the horizon, and linear combination coef-

ficients µ. The convergence rate for the cumulated response estimator is generally slower

than that for the individual response estimator. If yt follows an AR(1) process, the rates

are (
∑h−1

i=0 a
2i
1 )−1/2n1/2 and (

∑h
i=1(
∑h−i

j=0 |a1|j)2)−1/2n1/2, respectively. The uniform rates are

h−1/2n1/2 and h−3/2n1/2, respectively.

Remark 2. Under the finite-order VAR data generating process, MOPM developed uni-

form asymptotic theory for the individual response estimator. Specialized to the framework

of MOPM, Theorem 1 extends their theory by using a more general form of the asymptotic

variance, the validity of which does not require mean-independent shocks, thereby allowing

for general MDS shocks.

3.1 LP is semiparametrically effi cient

We now discuss the effi ciency of LP estimators β̂1(h) of individual responses (µ = µIR).

We frame most of the discussions under classical assumptions on data and the design, i.e.
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homoskedastic MDS shocks, and slope coeffi cients satisfying the stationarity assumption,

and a fixed horizon. Instead of running the LP regression for each horizon, an alternative

estimator of the impulse response is based on VAR implication. The method first estimates a

truncated VAR model with p lags and then induces impulse response estimates recursively as

a function of past responses and estimated VAR slopes. Under the VAR(∞) model, classical
assumptions on data, and a fixed horizon, Plagborg-Møller and Wolf (2021) show that the

LP and the VAR-implied estimators converge to the same estimand. Then, as the natural

next question, how do LP and VAR-implied estimators compare, in term of effi ciency?

Theorem 1 sheds light on this question. We first state a corollary. If ut is conditionally

homoskedastic (E(utu
′
t|us, s ≤ t − 1) = Σ), the expression for V can be simplified, and the

pointwise version of Theorem 1 becomes

n1/2
(
ν ′1[
∑h−1

i=0 β1(i)′Σβ1(i)]Σ−1ν1

)−1/2

[ν ′1β̂1(h)− ν ′1β1(h)]
d→ N (0, 1). (12)

Under classical assumptions on data and a fixed horizon, we can show that as the VAR

lag order diverges at an appropriate rate, the VAR-implied estimator of β1(h) has the same

asymptotic distribution as the one given in (12), by slightly extending the argument in

Lütkepohl (1990) (see also Lütkepohl, 2005, eqn. (15.4.1)).

Thus LP possesses optimality properties which the VAR-implied estimator enjoys. In par-

ticular, under classical assumptions mentioned above, LP reaches the asymptotic effi ciency

bound in the sense of Chamberlain (1987) under the semiparametric (conditional) moment

condition model E(yt−
∑∞

j=1 ajyt−j|yt−s, s ≥ 1) = 0. If one further assumes Gaussianity, the

LP is asymptotically Cramér-Rao effi cient.

The optimality property of LP is in contrast to the well known result that the direct

regression is less effi cient than the iterative (VAR-implied) estimator, under the finite-order

VAR model; see e.g. Bhansali (1997), Marcellino, Stock and Watson (2006), Xu (2020),

among others, in slightly different contexts. The intuition behind such effi ciency gain is

in a sense similar to that of a dimension-reduction factor model; all impulse responses are

functions of a relatively small number of common parameters, VAR slopes, so imposing such

functional relation (if correctly specified) should yield the effi cient estimator. However, the

effi ciency gain generated from such extraction via a parsimonious model diminishes as the

dimension of the model grows, which eventually leads to our effi ciency equivalence result.3

3Probably led by the ineffi ciency result on LP under finite-order VAR model, the literature has mixed
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The discussions so far in this subsection assume stationarity. Note that the stationarity

subspace is where the VAR-implied method potentially enjoys the most effi ciency gain (under

the finite-order model), so the equivalence result above is expected to hold more broadly.

Nevertheless, the asymptotic distribution for the LP estimator given in Theorem 1 holds

under much more general conditions on the parameter space, the range of horizons and

shock dependence properties, than the classical assumptions maintained above. In Section

4 we will consider the inference based on LP, the generality of which is not shared so far by

other existing approaches in the literature.

3.2 An alternative LP estimator

Instead of performing OLS on the regression (4), one can construct an alternative estimator

utilizing the serial dependence structure of the error term ξ1t(h, µ), when h ≥ 2, in the hope

of achieving “better”effi ciency. On way is to replace the outcome variable y1t(h, µ) with

y̌1t(h, µ) = y1t(h, µ)−
h−1∑
i=1

ϕ̊′1iůt+i

and then run OLS with the same set of regressors as in (4), where ϕ̊1i =
∑h

j=i µjβ̊1(j − i)
with some preliminary estimates of β1(i) and ut, denoted by β̊1(i) and ůt, respectively. This

estimator is referred to as the alternative LP estimator, denoted by β̌1(h, µ).

Lusompa (2022) showed that, for individual impulse responses (µ = µIR), under the

stationary homoskedastic AR(1) model (with the true lag order known) the alternative esti-

mator β̌1(h) is asymptotically more effi cient than the LP estimator β̂1(h) across h in general.

In Appendix B (Proposition 2), we show that in a simple setting such effi ciency gain does not

extend if a suffi ciently large lag order is used; β̌1(h) and β̂1(h) are equivalently effi cient. The

discrepancy between the asymptotic distribution of β̌1(h) and that of the infeasible estimator

(obtained by using true values of β1(i) and ut in forming y̌1t(h, µ)) is due to the estimation

error in ůt. Suppose that ůt is obtained by a VAR(pu) regression of yt on their lags. If the

conjecture on the effi ciency of LP under the infinite-order model. Lusompa (2022, footnote 5) mentioned
that “... in the infinite lag case ... most people would probably assume this (LP is less effi cient than VAR-
implied estimator)”. Focusing on identification and consistency, Plagborg-Møller and Wolf (2021, section
2.5) conjectured that LP and VAR are equally effi cient under stationary VAR(∞) model for a fixed horizon,
but did not provide the analysis.
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Figure 1: Ratio of RMSEs of β̌1(h) and β̂1(h) in simulations. The model is ARMA(1,1).
The sample size n = 240. The LP regression order p ∈ {3, 6, 12, 24}.

lag order pu is suffi ciently large, estimation errors of the first h− 1 VAR(pu) slopes enter the

asymptotic distribution of β̌1(h), which leads to the distributional equivalence of β̌1(h) and

β̂1(h).

In Figure 1 we report a simple simulation study. The figure shows the ratio of finite-

sample root mean square errors (RMSEs) of the standard and alternative LP estimators,

β̂1(h) and β̌1(h), as a function of response horizons. The data are generated from a scalar

ARMA(1,1) model, yt = ρyt−1 + ut + 0.5ut−1, where ut is I.I.D. (independent and identically

distributed) with the standard normal distribution. With a sample size n = 240, we use

the lag order p ∈ {3, 6, 12, 24}. For highly persistent data (ρ = 1), the RMSE advantage of

β̌1(h), if there any, is fairly small over all horizons and all lag orders. For mildly persistent

data (ρ = 0.5), β̌1(h) has a smaller MSE than β̂1(h) at medium and long horizons but

the difference clearly shrinks as the lag order increases, which corroborates our theoretical

equivalence result above.

While we defer more comprehensive investigation of β̌1(h) (especially under general con-

ditions of Theorem 1) to further study, given the optimality result discussed in Section 3.1,

we do not expect the effi ciency gain of the alternative estimator over LP asymptotically in

the VAR(∞) model at least under the classical setting of Plagborg-Møller and Wolf (2021)
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(stationarity, homoskedasticity and fixed horizons). Nevertheless, as mentioned in the in-

troduction, how to draw robust inference based on the alternative LP estimator remains

unknown.

3.3 Further remarks on Theorem 1

Conditions on the lag order. Under fixed horizon we only require p2/n → 0 (Assumption

2(i)). Even with stronger assumptions on data dependence (stationarity) and sometime on

shocks, the asymptotic theory for VAR-implied impulse response estimators often assumes a

more stringent restriction on the lag order, p3/n→ 0. Such restriction is inherited from the

joint limit theory for slope matrices of all p lags of VAR model (Lewis and Reinsel, 1985,

Gonçalves and Kilian, 2007), while our LP method only estimates one single slope matrix

(i.e. coeffi cient matrix of yt) and treats other p− 1 lags as control variables.

For asymptotic pivotalness of test statistics, it typically assumes p4/n → 0 even under

stationarity (Gonçalves and Kilian, 2007, theorem 2.2) for VAR-implied estimators. The

alternative LP-based estimator considered by Lusompa (2022) also requires p4/n → 0 for

his asymptotic theory under stationarity. For our estimator, we do not strengthen the

restrictions on the lag order when establishing the asymptotic distribution for test statistics;

see Section 4.

Asymptotic variance. Note that Theorem 1 holds under both the finite-order VAR and

VAR(∞) models, and we will show (in Section 4) that the asymptotic variance will be

estimated in the same way under either model. This is in contrast to the VAR-implied

impulse response estimator, the asymptotic variance of which is estimated differently under

two different models (Kilian and Lütkepohl, 2017, section 12.1.3).4 Such continuity of the

asymptotic distribution over models further reinforces our consideration of LP for uniform

inference.

Martingale representation of the score. The key tool to the proof of Theorem 1 is a

martingale representation. Examining (9), and ignoring smaller-order terms, the (effective)

4Such discontinuity of inference methods based on VAR-implied estimator can be mitigated by applying
the bootstrap method to a non-pivotal statistic which does not involve variance estimation (Inoue and Kilian,
2002). Nevertheless, existing literature (which mostly focuses on stationary univariate AR model) establishes
the validity over narrower spaces of model parameters, response horizon, and model lag order than those our
setting allows.
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score
∑n−h

t=p utξ1t(h, µ) which plays a major role in the asymptotic theory can be rewritten

as (see Lemma MART for a more general form)

n−h∑
t=p

utξ1t(h, µ) =
n∑

t=p+1

wt, (13)

where

wt =
[∑h

i=1 I{p≤t−i≤n−h}ut−iϕ′1i
]
ut.

The advantage of the representation (13) is that, even that score contributions utξ1t(h, µ)

are generally autocorrelated, the transformed summands wt are (conditionally and uncondi-

tionally heteroskedastic) martingale differences with respect to their natural filtration, given

that ut is assumed to be an MDS. This representation provides basis for establishing the

asymptotic theory, by allowing a straight application of the martingale central limit theorem

(CLT).

The approach of MOPM, in a more restricted setting, deals directly with the raw (untrans-

formed) score. To apply the CLT the approach relies on a reverse-time argument, which con-

sequentially requires shocks to be mean independent with the future, E(ut|us, s ≥ t+1) = 0.

Dispensing with such assumption of mean independence, although desirable for application

purposes, brings a technicality cost of more involved calculations of uniform bounds for

moments in the proof; see Section S1 in the Supplement to the paper.

Although the equality (13) is a simply algebraic rearrangement, it has a deeper root.

It connects with the classical argument in obtaining the central limit theorem for generic

stationary and serially correlated sequences, like the score contributions utξ1t(h, µ) (for a

given h) in our context. A general method is known as Gordin’s (1969) approach, in which

a martingale approximation plays a central role.5 Adapting this tool to score contributions

utξ1t(h, µ) gives the representation (13). Note that the representation (13) is exact, instead

of being approximate, due to the moving-average form of the LP(∞) error ξ1t(h, µ). In the

next section we show that the martingale representation (13) is not just a technical trick,

but also provides basis for construction of the standard error detailed there.

5See Beveridge and Nelson (1981), Phillips and Solo (1992), Wu and Woodroofe (2004), and Cuny and
Merlevède (2014), among others, for applications of the tool of martingale approximation and further devel-
opment.
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4 Two standard errors

To estimate the asymptotic variance V and form test statistics for inference, the general

HAR methods (Heteroskedasticity and Autocorrelation Robust methods) appear natural;

see e.g. Lazarus, et al. (2018), for recent development on the general topic. However, there

are prevalent reservations about their applications to the LP regression, especially when the

data are highly persistent and the horizon is long; see Herbst and Johannsen (2021) for a

recent discussion. In this section we consider two simple standard errors which adapt to the

LP regression and, unlike HAR methods, do not involve determination of tuning parameters.

The first variance estimator for ν ′1β̂1(h, µ) is of Eicker-Huber-White sandwich type,

V̂HC = (n− h− p+ 1)−2ν ′1Σ̂(h)−1 ·
[∑n−h

t=p η̂1t(h, µ)2ût(h)ût(h)′
]
· Σ̂(h)−1ν1,

where η̂1t(h, µ) is the OLS residual of (4), and Σ̂ = (n− h− p+ 1)−1
∑n−h

t=p ût(h)ût(h)′. The

variance estimator V̂HC , specialized to the one for the individual response, was proposed

by MOPM under the finite-order VAR(ptrue) model for the so-called lag-augmented local

projection regression, i.e. the regression (1) where the model order p is set as p = ptrue + 1.6

We study the variance estimator V̂HC under the general framework introduced in Section

2. It is shown that V̂HC can recover V asymptotically even for the regression (4) with

serially dependent errors, but only when such serial dependence in errors does not cause serial

correlation in score contributions, which can be generated by conditional heteroskedasticity

of unknown form. Thus the variance estimator V̂HC , despite its remarkable simplicity and

robustness, is not truly “heteroskedasticity-consistent (HC)”, even that the notation carries

the usual subscript HC.

The t-statistic using the variance estimator V̂HC is constructed as ŜHC = V̂
−1/2
HC [ν ′1β̂1(h, µ)−

ν ′1β1(h, µ)]. The following theorem describes the asymptotic behavior of ŜHC under the

VAR(∞) model.

6Under finite-order VAR model, Dufour et al. (2006) also discussed the robustness of the lag augmented
regression to persistent data but suggested using a more complicated standard error involving the choice of
a tuning parameter.
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Theorem 2. Suppose that Assumptions 1, 2, 3 and 4 hold. Then

lim
n→∞

sup
x∈R

sup
p≤p≤p

sup
1≤h≤h

sup
a∈A

∣∣∣P((VHC/V )1/2ŜHC ≤ x
)
− Φ(x)

∣∣∣ = 0,

where VHC = (n− h− p+ 1)−2ν ′1Σ−1
∑n−h

t=p Eutu
′
tξ1t(h, µ)2Σ−1ν1.

Theorem 2 shows that the consistency of the variance estimator V̂HC clearly requires

the equality Var(
∑n−h

t=p utξ1t(h, µ)) =
∑n−h

t=p Eξ1t(h, µ)2utu
′
t, which holds under the following

assumption.

Assumption 5. The score contribution process {utξ1t(h, µ), t = 1, 2, · · · } is serially
uncorrelated.

Note that Assumption 5 is implied by, thus weaker than, commonly used assumptions on

ut such as conditional homoskedasticity or mean independence. Assumption 5 is relatively

easy to check empirically.

To give concrete examples, consider a simple MDS ut = etet−1, where et is I.I.D. with

zero mean, unit variance and Ee3
t 6= 0. Simple calculations show that Cov(ut, u

2
t+1u

2
t−1) =

(Ee3
t )

2 6= 0. Thus ut violates the mean independence, which by definition would require ut
to be uncorrelated with any measurable function of random variables in the set {us : s 6=
t}. Nevertheless, the process utξt(h, µ) is still serially uncorrelated in this example, thus

Assumption 5 is satisfied.

Assumption 5 can be violated. Consider a slightly modified example, the MDS ut =

et|et−1|, where et is the same as in the last example. Examination shows that the process
utξt(h, µ) is serially correlated. This example is a simplification of an MDS with GARCH-

type and stochastic volatility functions, which generally violate Assumption 5 if the inno-

vation has non-zero third moment. Non-zero or even time-varying third moment is not

uncommon in applications (Hansen, 1994, Conrad, et al., 2013, Colacito, et al., 2016). In

the Supplement to the paper (Section S6), we provide empirical evidence that Assumption

5 may not be satisfied.

To derive lower-level conditions for Assumption 5, denote score contributions as st(h, µ) =
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utξ1t(h, µ). Then the autocovariance matrices of st(h, µ) are given by

Est(h, µ)st−j(h, µ)′ =

{ ∑h
i=j+1 E[ut+ju

′
tϕ
′
1iut+iu

′
t+iϕ1,i−j], if 1 ≤ j ≤ h− 1,

0, if j ≥ h.

Although score contributions are serially uncorrelated beyond h−1 lags, the autocorrelations

can play a role for smaller lags. Assumption 6 below imposes restrictions directly on the

fourth moments of ut, and is suffi cient for Assumption 5 for all h ≥ 1.

Assumption 6. Write ut = (u1t, · · · , uKt)′. Assume Eut−iu
′
t−juk1tuk2t = 0 for i > j > 0

and k1, k2 = 1, · · · , K.

Like Assumption 5, Assumption 6 is weaker than assuming conditional homoskedasticity

or future mean independence on ut. The scalar version of Assumption 6 appeared earlier

in the literature, and was imposed for inference validity of time series models in different

contexts (e.g. Deo, 2000, condition A(vii); Gonçalves and Kilian, 2004, assumption A’(iv’)).

For example, Gonçalves and Kilian (2004) show that a condition like Assumption 6 is required

for the validity of the recursive residual-based wild bootstrap scheme for stationary ARmodel

with conditional heteroskedasticity of unknown form.

We now introduce a new standard error which does not require Assumption 5. By the

martingale representation (13), we have

Var
(∑n−h

t=p utξ1t(h, µ)
)

=
n∑

t=p+1

Ewtw
′
t. (14)

The equality (14) motivates the following estimator of V , referred to as the martingale (MG)

variance estimator,

V̂ = (n− h− p+ 1)−2ν ′1Σ̂(h)−1
(∑n

t=p+1 ŵtŵ
′
t

)
Σ̂(h)−1ν1, (15)

where ŵt = [
∑h

i=1 I{p≤t−i≤n−h}ût−i(h)ϕ̃′1i]ũt and ϕ̃1i =
∑h

j=i µjβ̃1(j− i). In (15), β̃1(i) and ũt
are preliminary estimates of β1(i) and ut, respectively, and both estimates should converge

suffi ciently fast so that the following Assumption 7 is satisfied. Note that V̂ differs from the

sandwich variance estimator V̂HC only in the middle part.
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Assumption 7. The preliminary estimates β̃1(i) and ũt in (15) are such that

(i) limn→∞ sup
p≤p≤p

sup
1≤h≤h

sup
a∈A

P
(
hπ1(h, µ)−1

∑h
i=1 |ϕ̃1i − ϕ1i|2 > M

)
= 0, for all M > 0;

(ii) limM→∞ limn→∞ sup
p≤p≤p

sup
a∈A

P
(
p−2

∑n
t=p+1 |ũt − ut|2 > M

)
= 0.

For an example of β̃1(i), suppose that our initial interest is in the individual impulse re-

sponse (µ = µIR). Consider the LP estimator for β̃1(i). Theorem 1 shows that
∑h−1

i=0 |β̃1(i)−
β1(i)|2 = Op(n

−1
∑h−1

i=0 π1(i)), thus Assumption 7 (i) is satisfied provided h2/n → 0. The

fitted errors ũt can be obtained by running OLS on the VAR(p) regression. The following

theorem shows the uniform validity of the test based on the MG variance estimator V̂ .

Theorem 3. Suppose that Assumptions 1, 2, 3, 4 and 7 hold. Let Ŝ = V̂ −1/2[ν ′1β̂1(h, µ)−
ν ′1β1(h, µ)]. Then

lim
n→∞

sup
x∈R

sup
p≤p≤p

sup
1≤h≤h

sup
a∈A

∣∣∣P(Ŝ ≤ x)− Φ(x)
∣∣∣ = 0.

Remark 3. Theorem 3 shows that estimation of unknown parameters in the asymp-

totic variance of β̂1(h, µ) has asymptotically negligible effects on the test based on the MG

standard error (as long as these estimates satisfy the constraints in Assumption 7). This is

in contrast to the method of using these estimates (under similar constraints) in construct-

ing the point estimator, as shown in Section 3.2, which generally has non-trivial effects on

(increases) the asymptotic variance.

Remark 4. The MG variance estimator can be extended to infer about cross-equation
restrictions. Such restrictions are useful when empiricists want to learn responses of sev-

eral macro variables to an economic shock. The interest is thus in the response ma-

trix β(h, µ) =
∑h

j=1 µjβ(j), which can be estimated by OLS on the regression (4) for

each response variable ykt(h, µ), where k = 1, · · · , K. Denote the estimator as β̂(h, µ) =∑n−h
t=p yt(h, µ)ût(h)′[

∑n−h
t=p ût(h)ût(h)′]−1, where yt(h, µ) = (y1t(h, µ), · · · , yKt(h, µ))′. Let ν

be a dν ×K2 matrix of constants. To draw inference for the dν × 1 vector νvec(β(h, µ)), we
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can construct the MG variance matrix estimator Ω̂ as

Ω̂ = (n− h− p+ 1)−2ν(Σ̂(h)−1 ⊗ IK)
(∑n

t=p+1 ŴtŴ
′
t

)
(Σ̂(h)−1 ⊗ IK)ν ′,

where Ŵt = [
∑h

i=1 I{p≤t−i≤n−h}(ût−i(h)⊗IK)ϕ̃i]ũt, ϕ̃i = (ϕ̃1i, · · · , ϕ̃Ki)′ and ϕ̃ki =
∑h

j=i µjβ̃k(j−
i), for k = 1, · · · , K, with β̃k(j) and ũt being preliminary estimates. The Wald statistic is
then formed as {νvec[β̂(h, µ)− β(h, µ)]}′Ω̂−1νvec[β̂(h, µ)− β(h, µ)]. If νvec(β(h, µ)) reduces

to the scalar ν ′1β1(h, µ) for a K-dimensional vector ν1, the Wald statistic reduces to the

square of Ŝ defined in Theorem 3.

Remark 5 (Finite-order VAR and lag augmentation). In the literature it is often assumed
that the data follow a VAR process with a finite number ptrue of lags. Under such finite-

order VAR model, Assumption 2(ii) requires lag augmentation, p ≥ ptrue + 1. While this

assumption is essential for the consistency of V̂HC , it can be weakened as p ≥ ptrue (i.e. lag

augmentation is not needed) for the validity of the MG variance estimator V̂ , provided that

at least two lags are used in the LP regression (4) (i.e. p ≥ 2).

To illustrate, let Rt be the regression residual of yt on yt−1, · · · , yt−p+1. The require-

ment p ≥ 2 guarantees that for inference of β1(h, µ), the effective regressor Rt in the lo-

cal projection regression (4) is stationary if the data yt are not integrated or nearly in-

tegrated of order two or more (Assumption 1). The condition p ≥ 2 essentially requires

the presence of control variables in the regression. The effective regression score is now∑n−h
t=p Rtξ1t(h, µ), and importantly, Rt 6= ut if we set p = ptrue and the model is VAR(ptrue)

(i.e. aptrue 6= 0). Note that the martingale representation (13) holds algebraically, which now

becomes
∑n−h

t=p Rtξ1t(h, µ) =
∑n

t=p+1w
R
t , with w

R
t = (

∑h
i=1 I{p≤t−i≤n−h}Rt−iϕ

′
1i)ut. The key

argument to justify the MG variance estimator V̂ still goes through even that Rt does not

recover the shock ut: wRt is an MDS as long as ut is an MDS, since Rt only depends on

current and past values of ut. We thus continue to have the equality

Var
(∑n−h

t=p Rtξ1t(h, µ)
)

=

n∑
t=p+1

EwRt w
R′
t ,

a premise of the validity argument for the MG variance estimator V̂ .

In contrast, as shown by MOPM, lag augmentation is crucial to justify the variance es-

timator V̂HC . Without lag augmentation, the fact that Rt is not a white noise causes the
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non-zero serial correlation of the processRtξ1t(h, µ) (even when ut satisfies the full mean inde-

pendence assumption). This in turn yields Var(
∑n−h

t=p Rtξ1t(h, µ)) 6=
∑n−h

t=p ERtR
′
tξ1t(h, µ)2,

thereby invalidating the variance estimator V̂HC and consequently affecting the inference

based on ŜHC .

5 Simulation experiments

5.1 The designs and methods

In this section we investigate the finite-sample performance of a few inference methods

for individual impulse responses β(h) based on local projection regression, including those

analyzed in the paper. Consider the following univariate data-generating processes (DGPs):

AR(1): (1− ρL)yt = ut,

AR(2): (1− ρL)(1− 0.5L)yt = ut,

ARMA(1,1): (1− ρL)yt = (1 + 0.5L)ut,

where the shock ut is either I.I.D. with the standard normal distribution, or follows a condi-

tionally heteroskedastic process. The combinations of three conditional mean specifications

and two shock specifications yield six DGPs in total. For conditionally heteroskedastic

shocks, we use the exponential GARCH (EGARCH(1,1)) model. In particular, ut = σtet,

where lnσ2
t = −0.23 + 0.95 lnσ2

t−1 + 0.25[|et−1| − (2/π)1/2] − 0.3et−1, and et is an I.I.D. se-

quence with the standard normal distribution. We then standardize each realization of the

path of ut so that it has unit variance. The parameter choices in the EGARCH model are

close to those used in the simulation study of Gonçalves and Kilian (2004, table 4). The

autoregressive root ρ is set as 0.0, 0.9, 0.98 or 1, covering persistent and highly persistent

data. The number of realizations in simulations is 10,000. We consider two sample sizes

n = 240 and n = 1200, the latter of which is less realistic but is useful to demonstrate the

asymptotic behavior of inference procedures. We consider ten integer horizons ranging from

1 to 60. For all DGPs, we use the sieve VAR model, in which the lag order p̂true is selected

using Akaike information criterion (AIC).

We consider five methods to construct confidence interval for β(h) based on the local

projection regression (1). The first method (referred to as LALP-HC) is based on the test
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statistic proposed by MOPM. The method runs the lag-augmented local projection regres-

sion (i.e. setting p = p̂true + 1) and uses the variance estimator V̂HC . The second method

(referred to as LALP-HAR) runs the lag-augmented local projection regression, as the first

one does, but applies the general HAR approach to inference. To implement, we follow the

recommended procedure by Lazarus et al. (2018) to use the equally weighted cosine (EWC)

long-run variance estimator and Student’s t critical value. This proposal, a competitor to

ours following immediately after, provides a natural modification to the MOPM statistic for

researchers who would like to draw robust inference of β(h) to both highly persistent data

and unknown serial correlation in score contributions.

The third method (referred to as LALP-MG) is based on the newly proposed martingale

(MG) variance estimator V̂ (and the test statistic Ŝ), again, after running the lag-augmented

local projection regression. The fourth method (referred to as hybrid-MG) is based on a hy-

brid of the lag-augmented and standard (without lag augmentation) LP regressions, enter-

taining the controlled lag-order choice flexibility of the MG-standard-error-based inference,

discussed in Remark 5. This method uses the MG variance estimator V̂ , but in the local

projection regression, sets the lag order p = p̂true + 1 if p̂true = 1 or h = 1, but using p = p̂true

otherwise; lag augmentation is implemented only when needed. As the last method (referred

to as LP-HC), we also consider the standard local projection regression, without lag aug-

mentation (i.e. setting p = p̂true), coupled with the variance estimator V̂HC . This approach is

closely related to the first method listed above, LALP-HC, and is considered in our study for

the purpose of sensitivity analysis to the lag order (e.g. shedding light on the question, how

would LALP-HC behave if the lag order is under-selected by one?). Note that the hybrid

method would not be valid when the HC standard error is used, under the finite-order VAR

model. For all methods except LALP-HAR, we use the standard normal critical value. The

nominal coverage level is set as 90% in simulations.

5.2 The results

The full set of simulation results on actual coverage and length (adjusted for correct coverage)

of confidence intervals is reported in the Supplement (Section S7). In Figures 2 and 3 here we

highlight the results on the coverage under AR(2) and ARMA(1,1) data generating processes

with ρ = 0.98, which provide a snapshot of the findings we summarize below.

LALP-HC v.s. LALP-MG. The results show that for I.I.D. shocks (under which LALP-
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HC and LALP-MG are asymptotically equivalent), LALP-MG confidence intervals have

better coverage than LALP-HC ones when n = 240, especially at long horizons, but the

difference almost disappears when n = 1200. For EGARCH shocks (which generate serial

correlation in score contributions), LALP-MG has notably better coverage than LALP-HC

at short, medium and long horizons when n = 240, and the difference is even larger and

substantial when n = 1200. This is true across all three conditional mean designs considered,

AR(1), AR(2), and ARMA(1,1). LALP-HC and LALP-MG have overall similar adjusted

length. When n = 240, in most cases LALP-MG has shorter adjusted length than LALP-

HC but the difference is quite small.

LALP-HAR, as an alternative inferential method (to LALP-MG) of accommodating cor-

related score contributions, does not seem to help mitigate the coverage distortion of LALP-

HC under our designs. The method either performs similarly to LALP-HC, and in many

cases (especially under EGARCH shocks when we expect LALP-HAR to work), has even

worse coverage than LALP-HC. Under ARMA(1,1) model, LALP-HAR has the lowest cov-

erage overall among all methods considered. It has overall similar adjusted length to, and

in many cases greater length than, LALP-HC.

Hybrid-MG appears to have the best coverage overall among all methods considered.

Compared to LALP-MG, hybrid-MG has notably better coverage under AR(2) model. Un-

der AR(2) model, if the AIC correctly identifies the lag order (which happens for most

realizations), the difference between hybrid-MG and LALP-MG is essentially in lag augmen-

tation or not. Not to lag augment leads to better covered (but somewhat wider) confidence

intervals. We expect these observations to extend to AR models of first few higher orders.

Under AR(1) and ARMA models, the two methods work almost identically, either because

of the design or the diminishing effect of lag augmentation when the chosen lag order is large.

Lastly we observe that although LP-HC produces most under-covered confidence inter-

vals among all methods under AR(1) model, the results are much less contrasting under

AR(2) model. LP-HC performs almost identically to LALP-HC under the ARMA model.

In summary, our simulations show that although the trick of lag augmentation tends to play

a less important role in inference as the lag order deviates from the very first few integers

(which is probably realistic in applications), the potential improvement generated from using

the MG standard error appears to be fairly consistent across different models and horizons.
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6 Concluding remarks

Local projection is simple to implement. Recent research shows that the method of LPs

has advantage, on top of its implementational simplicity, in drawing inference of impulse

responses over competing methods, especially regarding uniform validity. The current pa-

per contributes to the literature by showing that in a realistic setting, local projections can

actually be more effi cient than previously thought. LP is potentially (one of) the most effi -

cient estimators for the impulse response under martingale difference shocks if the controlled

lag order diverges. Using a large number of lags is practical in that the finite-order VAR

model has been argued to be most plausibly thought as the approximation of the actual data

generating processes which are implied by macro models.

In this paper, we study the asymptotic properties and propose novel inference methods

for the local projection regression which allow researchers to remain relatively agnostic of

persistence levels and form of heteroskedasticity in the data. A potential future research

direction can be navigation of the bias and variance trade-off in finite samples when the local

projection regression is long, in the presence of many controlled lags of multiple endogenous

variables, possibly through some shrinkage-type (machine learning) methods.

Appendix A: Proofs

In this appendix, we provide the proof of Theorem 1. The proofs of Proposition 1 and

Theorems 2 and 3 are provided in the Supplement to the paper (Sections S2, S3 and S4).

Proof of Theorem 1. Following Andrews, et al. (2020) and MOPM, we will show
V −1/2[ν ′1β̂1(h, µ) − ν ′1β1(h, µ)]

d→ N (0, 1), for any sequence {a = a(n)} ∈ A, and any
sequences {h = h(n)} and {p = p(n)} of positive integers satisfying 1 ≤ h(n) ≤ h,

1 ≤ p ≤ p(n) ≤ p where h/n → 0 and hµ2p2/n → 0, and assumptions of Theorem

1. Having this in mind, in what follows we do not write a, β1(i, µ), p or h explicitly

as functions of n, for notational simplicity. For a deterministic function f(p, h, a), write

supp≤p≤psup1≤h≤hsupa∈Af(p, h, a) as supp,h,af(p, h, a) for simplicity. The proof of (10) con-

sists of three parts.

Part I. We first show asymptotic normality for the (mean-zero) score Tn =
∑n−h

t=p τ
′utξ1t(h, µ),
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where τ = Σ−1ν1. [It is given in (20)].

Recall that wt = (
∑h

i=1 ut−ic
′
ti)ut is a martingale difference array, where cti = Itiϕ1i with

Iti = I{p≤t−i≤n−h}. Using the martingale representation (13), we can write

Tn =
n−h∑
t=p

τ ′utξ1t(h, µ)
(13)
=

n∑
t=p+1

τ ′wt

=

p+h−1∑
t=p+1

τ ′wt︸ ︷︷ ︸
=Tn1

+

n−h+1∑
t=p+h

τ ′wt︸ ︷︷ ︸
=Tn2

+
n∑

t=n−h+2

τ ′wt︸ ︷︷ ︸
=Tn3

(16)

, Tn1 + Tn2 + Tn3.

Given the representation above, it is convenient to define the index sets S = {t : p+h ≤ t ≤
n − h + 1} and Sc = {p + 1, · · · , n}\S. For t ∈ S, we have wt = (

∑h
i=1 ut−iϕ

′
1i)ut, thus the

distribution of wt does not depend on t.

Among the three terms of (16), Tn2 is the dominant one. Lemma MOMT-W(i) shows

that Cw ≤ π1(h, µ)−1E(τ ′wt)
2 ≤ Cw, for t ∈ S and two positive constants Cw and Cw. Since

ET 2
n2 = (n− 2h− p+ 2)E(τ ′wt)

2, we thus have the asymptotic order of ET 2
n2 :

Cw ≤ π1(h, µ)−1(n− 2h− p+ 2)−1ET 2
n2 ≤ Cw. (17)

For other two terms Tn1 and Tn3, by Lemma MOMT-W(i) (eqn.(30)),

ET 2
n1 =

p+h−1∑
t=p+1

E(τ ′wt)
2 ≤ Cw(h− 1)π1(h, µ), (18)

ET 2
n3 =

n∑
t=n−h+2

E(τ ′wt)
2 ≤ Cw(h− 1)π1(h, µ). (19)

In view of (17) and (18), (ET 2
n2)−1ET 2

n1 ≤ C−1
w Cw(n−2h−p+2)−1(h−1) ≤ C−1

w Cw(n−2h−p+

2)−1h→ 0, since (h+p)/n→ 0. Thus by Chebyshev’s inequality, limn→∞ supp,h,aP((ET 2
n2)−1/2Tn1 >

M) = 0, for all M > 0. Similarly, the result holds if Tn1 is replaced by Tn3.

So for any sequences {a = a(n)}, {h = h(n)} and {p = p(n)} described above,

(ET 2
n2)−1/2Tn = (ET 2

n2)−1/2Tn2 + op(1)
d→ N (0, 1), (20)
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provided that

(ET 2
n2)−1/2Tn2

d→ N (0, 1). (21)

The result (21) follows from the central limit theorem for the martingale difference array

{τ ′wt : t ∈ S}, (Davidson, 1994, theorem 24.3), if we can show that

lim
n→∞

supp,h,a(n− 2h− p+ 2)−1[E(τ ′wt)
2]−2E(τ ′wt)

4 = 0, for t ∈ S; (22)

lim
n→∞

supp,h,aP
(

(ET 2
n2)−1

∑
t∈S(τ ′wt)

2 − 1 > M
)

= 0, for all M > 0. (23)

Consider (22) first. Note that

(n− 2h− p+ 2)−1[E(τ ′wt)
2]−2E(τ ′wt)

4

≤ (n− 2h− p+ 2)−1|µ|21C−2
w Cw4 [by (29) and Lemma MOMT-W(ii)]

→ 0, [since (h+ p+ µ2)/n→ 0]

as n→∞, thus (22) holds.
Consider (23) now. By Chebyshev’s inequality, it suffi ces to show that

lim
n→∞

sup
p,h,a

(ET 2
n2)−2Var(

∑
t∈S

(τ ′wt)
2) = 0.

Note that

(ET 2
n2)−2Var(

∑
t∈S

(τ ′wt)
2) = (ET 2

n2)−2
∑
t∈S

Var((τ ′wt)
2)+(ET 2

n2)−2
∑

{t,s}⊂S,t6=s

Cov((τ ′wt)
2, (τ ′ws)

2).

The first term is bounded by

(ET 2
n2)−2

∑
t∈S

E(τ ′wt)
4 ≤ (n− 2h− p+ 2)−1[E(τ ′wt)

2]−2E(τ ′wt)
4 → 0

uniformly in p, h, a, which holds by (22). It thus remains to show

(ET 2
n2)−2

∑
{t,s}⊂S,t6=s

Cov((τ ′wt)
2, (τ ′ws)

2)→ 0, (24)
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uniformly in p, h, a. Note that, in view of the invariance of the distribution of wt for t ∈ S,

LHS of (24)

= (ET 2
n2)−22

n−2h−p+1∑
`=1

∑̀
k=1

Cov((τ ′w0)2, (τ ′wk)
2)

=

n−2h−p+1∑
`=1

$`
(n− 2h− p+ 2)(n− 2h− p+ 1)

`

∑̀
k=1

(ET 2
n2)−2Cov((τ ′w0)2, (τ ′wk)

2),

where $` = 2(n− 2h− p+ 2)−1(n− 2h− p+ 1)−1` and
∑n−2h−p+1

`=1 $` = 1. Thus by Toeplitz

Lemma, it suffi ces to show

(n− 2h− p+ 2)

n−2h−p+1∑
k=1

(ET 2
n2)−2Cov((τ ′w0)2, (τ ′wk)

2)→ 0,

uniformly in p, h, a, or equivalently, in view of (17),

lim
n→∞

supp,h,a(n− 2h− p+ 2)−1π1(h, µ)−2

n−2h−p+1∑
k=1

Cov((τ ′w0)2, (τ ′wk)
2) = 0.

The last result holds by Lemma CW. So (24) holds, and then (23) holds. Therefore, (21) is

proved.

Part II. We now show that for any sequences {a = a(n)}, {p = p(n)} and {h = h(n)}
described above,

(ET 2
n2)−1/2

n−h∑
t=p

τ ′utψ1t(h, µ)
d→ N (0, 1). (25)

To show (25), given the result in Part I (i.e. (20)), we only need to show that for all M > 0,

lim
n→∞

sup
p,h,a

P
(∣∣∣(ET 2

n2)−1/2
∑n−h

t=p τ
′ut
∑∞

`=p γ1`(h, µ)′yt−`

∣∣∣ > M
)

= 0. (26)

(26) holds provided that, in view of (17),

Var(
∑n−h

t=p τ
′ut
∑∞

`=p γ1`(h, µ)′yt−`)

π1(h, µ)(n− 2h− p+ 2)
→ 0, (27)
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uniformly over p, h, a. In fact, the LHS of (27) is

π1(h, µ)−1(n− 2h− p+ 2)−1

n−h∑
t=p

E(τ ′ut)
2[
∞∑
`=p

γ1`(h, µ)y′t−`]
2

≤ π1(h, µ)−1 n− h− p+ 1

n− 2h− p+ 2
|τ |2[

∞∑
`=p

∞∑
j=p

|γ1`(h, µ)||γ1j(h, µ)|]E|ut|2|yt−`||yt−j|

[by Cauchy inequality]

≤ π1(h, µ)−1π(n)
n− h− p+ 1

n− 2h− p+ 2
|τ |2

[∑∞
`=p |γ1`(h, µ)|

]2

(E|ut|4KCy4)1/2

[since E|yt|4 ≤ KCy4π(n)2, by Lemma MOMT-Y(i)]

≤ 2(E|ut|4KCy4)1/2|τ |2π1(h, µ)−1π(n)(1 + C2)π1(h, µ)
[∑∞

j=1 min{j, h+ 1}|ap−1+j|
]2

[by Lemma TAIL(i), and n ≥ 3h+ p− 3 as assumed]

= 2(E|ut|4KCy4)1/2|τ |2(1 + C2) ·
[
π(n)1/2

∑∞
j=1 min{j, h+ 1}|ap−1+j|

]2

︸ ︷︷ ︸
→0, [weaker than Assumption 2(ii)]

→ 0,

uniformly over p, h, a, where π(n) = max1≤k≤K πk(n). So (27) holds, and (25) is proved.

Part III.Nowwe turn to the estimator β̂1(h, µ).Writing Σ̂ = (n−p−h+1)−1
∑n−h

t=p ût(h)ût(h)′,

we have

(n− p− h+ 1)(ET 2
n2)−1/2[ν ′1β̂1(h, µ)− ν ′1β1(h, µ)]

= (ET 2
n2)−1/2ν ′1Σ̂−1

n−h∑
t=p

ût(h)ψ1t(h, µ) [by (9)]

= (ET 2
n2)−1/2τ ′

n−h∑
t=p

ût(h)ψ1t(h, µ) + s.o. [by Lemma SIG]

= (ET 2
n2)−1/2τ ′

n−h∑
t=p

utψ1t(h, µ) + oP (1) [by Lemma NEG]

d→ N (0, 1), [by (25)]
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where s.o. means a smaller order term. Note that V = (n− h− p+ 1)−2ET 2
n , so

(n− p− h+ 1)−2ET 2
n2

V
=

ET 2
n2

Var(Tn)
=

ET 2
n2

ET 2
n1 + ET 2

n2 + ET 2
n3

→ 1, (28)

using (17), (18) and (19). We thus have V −1/2[ν ′1β̂1(h, µ) − ν ′1β1(h, µ)]
d→ N (0, 1) for any

sequence {a = a(n)}, {p = p(n)} and {h = h(n)} described above. Then (10) follows from
Pólya’s Theorem.

Lastly, to show the bounds in (11),

π1(h, µ)−1(n− h− p+ 1)V

= π1(h, µ)−1(n− h− p+ 1)−1ET 2
n

≥ π1(h, µ)−1(n− h− p+ 1)−1ET 2
n2 ≥

n− 2h− p+ 2

n− h− p+ 1
Cw [by (17)]

≥ 2−1Cw. [since n ≥ 3h+ p− 3 by assumption]

For the upper bound,

π1(h, µ)−1(n− h− p+ 1)−1ET 2
n

≤ (n− h− p+ 1)−1[2Cw(h− 1) + (n− 2h− p+ 2)Cw] [by (17), (18), (19)]

=
n− p

n− h− p+ 1
Cw ≤ 2Cw. [since n ≥ 3h+ p− 3 ≥ 2h+ p− 2]

Then (11) holds with CV = 2−1Cw and CV = 2Cw. The proof of Theorem 1 is complete. �

The proof of Theorem 1 invokes following lemmas, for which the proofs are provided in

the Supplement to the paper (Section S1).

Lemma MART. (i) Let xt, ϕi and ut be sequences such that their dimensions are

conformable in the product xtϕiut. Let ξt(h) =
∑h

i=1 ϕiut+i. Then the following algebraic

equality holds:

M∑
t=m

xt−kξt(h) =

M+h∑
t=m+1

(

h∑
i=1

I{m−k≤t−k−i≤M−k}xt−k−iϕi)ut,
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where k ≥ 0.

(ii) The equality (13) holds.

The following lemmas hold under the assumptions of Theorem 1.

Lemma MOMT-W. Let S = {t : p + h ≤ t ≤ n− h + 1} and Sc = {p + 1, · · · , n}\S.
Let τ = Σ−1ν1.

(i). There exist constants Cw > 0 and Cw > 0, such that

π1(h, µ)−1E(τ ′wt)
2 ≥ Cw, for t ∈ S (29)

π1(h, µ)−1E(τ ′wt)
2 ≤ Cw, for t ∈ S ∪ Sc. (30)

(ii). For t ∈ S, |µ|−2
1 π1(h, µ)−2E(τ ′wt)

4 ≤ Cw4, for some constant Cw4 > 0.

Lemma CW.

lim
n→∞

sup
1≤h≤h

sup
a∈A

∣∣∣(n− 2h− p+ 2)−1π1(h, µ)−2
∑n−2h−p+1

k=1 Cov((τ ′w0)2, (τ ′wk)
2)
∣∣∣ = 0.

Lemma MOMT-Y. Let πk(n) =
∑n−1

i=0 |βk(i)|2. Then for k = 1, · · · , K and t =

1, · · · , n,
(i). πk(n)−2Ey4

kt ≤ Cy4,

(ii). E(∆ykt)
4 ≤ C∆y4,

where ∆yt = yt − yt−1, and Cy4 > 0 and C∆y4 > 0 are two constants.

Lemma ARP. Write the VAR(∞) model (2) in the following form

yt = δ1yt−1 +
∞∑
j=1

δj+1∆yt−j + ut, (31)

where δ1 =
∑∞

i=1 ai and δj+1 = −
∑∞

i=j+1 ai for j ≥ 1. Let {δ̂j(h) : j = 1, · · · , p− 1} be OLS
coeffi cients of the VAR(p− 1) regression (transformed as in (31)) using data indexed by t =

p, · · · , n−h, i.e. regression of yt on {yt−1,∆yt−1, · · · ,∆yt−p+2}. Denote δ = (δ1, δ2, · · · , δp−1)

and δ̂(h) = (δ̂1(h), δ̂2(h), · · · , δ̂p−1(h)). Then,

lim
M→∞

lim
n→∞

sup
p,h,a

P
(∣∣∣p−1/2 [̂δ(h)− δ]Υn(p− 1)

∣∣∣ > M
)

= 0,
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where Υn(p− 1) is defined in Assumption 4.

Lemma SIG. lim
n→∞

sup
p,h,a

P
(∣∣∣(n− p− h+ 1)−1

∑n−h
t=p ût(h)ût(h)′ − Σ

∣∣∣ > M
)

= 0, for all

M > 0.

Lemma TAIL. Let θ1`(h, µ) and γ1`(h, µ), for ` ≥ 1, be coeffi cients in (4) and (8),

respectively.

(i).
∑∞

`=p |γ1`(h, µ)| ≤ [(1 + C2)π1(h, µ)]1/2
∑∞

j=1 min{j, h+ 1}|ap−1+j|.
(ii).

∑∞
j=1 j|θ1,p−1+j(h, µ)| ≤ C2π1(h, µ)

∑∞
j=1 j|ap−1+j|, where C2 is defined in Assump-

tion 1.

Lemma NEG. Let Tn2 =
∑n−h+1

t=p+h τ
′wt. Then for all M > 0,

lim
n→∞

sup
p,h,a

P
(∣∣∣(ET 2

n2)−1/2
∑n−h

t=p τ
′[ût(h)− ut]ψ1t(h, µ)

∣∣∣ > M
)

= 0.

Lemma SCORE.

(i). lim
M→∞

lim
n→∞

sup
p,h,a

P
(∣∣∣(n− h− p+ 1)−1/2π1(h, µ)−1

∑n−h
t=p Π(n)−1/2yt−1ξ1t(h, µ)

∣∣∣ > M
)

= 0;

(ii). lim
M→∞

lim
n→∞

sup
p,h,a

P
(∣∣∣(n− h− p+ 1)−1/2π1(h, µ)−1

∑n−h
t=p ∆yt−j+1ξ1t(h, µ)

∣∣∣ > M
)

= 0,

for j ≥ 2.

Appendix B: The alternative LP estimator

In Appendix B we present a result on the alternative LP estimator β̌(h) of the individual

response β(h) introduced in Section 3.2 for the single-equation model (K = 1).

Proposition 2. Suppose the data follow the AR(1) process, yt = ayt−1 + ut, where a is

fixed such that |a| < 1, and ut is I.I.D. with zero mean and unit variance. The alternative

LP estimator β̌(h) is defined as the OLS slope coeffi cient of yt in the regression of y̌t+h =

yt+h −
∑h−1

i=1 β̊(h − i)̊ut+i on {yt, · · · , yt−p+1}, where p ≥ 2. The preliminary estimates of

β(i) and ut are such that β̊(i) − β(i) = OP (n−1/2) for 1 ≤ i ≤ h − 1, and ůt is obtained

by regressing yt on {yt−1, · · · , yt−pu}, where pu ≥ h. Assume that n−1p2p2
u → 0. Then, as
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n→∞, for a given (fixed) h ≥ 2,

n1/2[β̌(h)− β(h)]
d→ N

(
0,
∑h−1

i=0 β(i)2
)
.

Proposition 2 shows that the alternative LP estimator is asymptotically equivalent to LP

if a suffi ciently large number of lags is included in the regression; see (12). Proposition 2 can

be compared with Lusompa (2022, proposition 6) which uses p = pu = 1.

Proof of Proposition 2. As before, let ût(h) be the projection residual of yt on

{yt−1, · · · , yt−p+1}. Then

β̌(h) = [

n−h∑
t=p

ût(h)2]−1

n−h∑
t=p

ût(h)y̌t+h [FWL Theorem, since p ≥ 2]

= [
n−h∑
t=p

ût(h)2]−1

n−h∑
t=p

ût(h)[yt+h −
h−1∑
i=1

β(h− i)ut+i] + A2 [add and subtract]

= β(h) + A1 + A2, [OLS algebra]

where A1 = [
∑n−h

t=p ût(h)2]−1
∑n−h

t=p ût(h)ut+h and A2 = [
∑n−h

t=p ût(h)2]−1
∑n−h

t=p ût(h)[Bt− B̊t],

with Bt =
∑h−1

i=1 β(h− i)ut+i and B̊t =
∑h−1

i=1 β̊(h− i)̊ut+i. The proof is equivalent to showing
that n1/2(A1 + A2)

d→ N
(

0,
∑h−1

i=0 β(i)2
)
.

Define the lower triangular matrix G and the tridiagonal Va,h as

G
(h−1)×(h−1)

=


1

a
. . .

. . . . . . . . .

ah−2 . . . a 1

 , Va,h
(h−1)×(h−1)

=


1 −a
−a 1 + a2 . . .

. . . . . . −a
−a 1 + a2

 .
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We will show that (in Section S5 of the on-line Supplement)

n1/2A1 = n−1/2

n−h∑
t=p

utut+h + oP (1), (32)

n1/2A2 = β
′
Gn1/2


â1 − a
...

âh−1 − aI{h=2}

+ oP (1), (33)

where β
′

= (β(h − 1), · · · , β(1)), and {â1, · · · , âh−1, · · · , âpu} are OLS slopes in obtaining
ůt, with pu ≥ h. Note that only the first h − 1 slopes {â1, · · · , âh−1} matter for the limit
distribution of β̌(h), but at least one more lag is used in the autoregression to obtain these

slopes.

Proposition 2 then follows from two convergences n−1/2
∑n−h

t=p utut+h
d→ N (0, 1) and

n1/2


â1 − a
...

âh−1 − aI{h=2}

 d→ N (0, Va,h), (34)

where two convergences occur jointly, and two limit normal random variables are indepen-

dent. The convergence in (34) holds from the stationary AR(1) data generating process, and

the key assumption pu ≥ h. Noting that GVa,hG′ = Ih−1, the proof is complete. �
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Figure 2: Coverage rates of five 90%-nominal confidence intervals for the impulse response
β(h) under DGP AR(2) with I.I.D. or EGARCH shocks. The two AR roots are 0.98 and
0.5. The sample size n ∈ {240, 1200}.
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Figure 3: Coverage rates of five 90%-nominal confidence intervals for the impulse response
β(h) under DGP ARMA(1,1) with I.I.D. or EGARCH shocks. The AR and MA roots are
0.98 and 0.5, respectively. The sample size n ∈ {240, 1200}.
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