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Abstract

We develop a tractable model of limited cognitive perception of the optimal policy

function, with agents using costly reasoning effort to update beliefs about this optimal

mapping of economic states into actions. A key result is that agents reason less (more)

when observing usual (unusual) states, producing state- and history-dependent behavior.

Our application is a standard incomplete markets model with ex-ante identical agents

that hold no a-priori behavioral biases. The resulting ergodic distribution of actions

and beliefs is characterized by “learning traps”, where locally stable dynamics of wealth

generate “familiar” regions of the state space within which behavior appears to follow

past-experience-based heuristics. We show qualitatively and quantitatively how these

traps have empirically desirable properties: the marginal propensity to consume is

higher, hand-to-mouth status is more frequent and persistent, and there is more wealth

inequality than in the standard model.
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1 Introduction

Standard models assume that, given beliefs about the state of the world, decision-makers face

no cognitive limitations in figuring out their optimal course of action. In other words, agents

are always fully aware of the answer to a critical question: ‘What is the action that yields

the highest value, given my current circumstances?’. Since in most economic environments

individual circumstances vary over time, this view of human cognition essentially assumes

that people can costlessly solve for their optimal policy functions – the state-contingent

mapping of beliefs about states, economic structure and etc., into the best course of action.

In reality, however, coming up with a “good” plan of action is the outcome of conscious

reasoning and deliberation, which requires cognitive effort. Motivated by a long-standing

interest in modeling cognitive resources as scarce (e.g. Simon (1955, 1956)), in this paper we

develop a model where figuring out the optimal action requires costly reasoning effort.1

We focus on two major questions. The first is how to model costly reasoning about the

unknown optimal policy function with a general, yet tractable framework that is applicable

across different economic environments, while capturing key empirical insights on how human

reasoning works. Specifically, we aim to model the reasoning process as (i) noisy, (ii) resource-

rational and (iii) subject to ‘episodic memory’, or the differential recall of past information

based on its similarity with the current situation, all of which are well-documented features

by the neuroscience and psychology literature. We achieve these goals by casting the agents’

reasoning as an ‘as if’ Bayesian non-parametric estimation of the unknown optimal policy

function, subject to a trade-off between accuracy and mental cost. The second question

is to establish whether and how the resulting bounded-rationality mechanism matters for

micro and macro behavior. To do so, we use a standard Aiyagari (1994) incomplete markets

model as a laboratory to show that, even though reasoning errors are i.i.d. and agents have

no a-priori behavioral biases, costly reasoning endogenously alters ergodic behavior in a

systematic and quantitatively promising way.

To fix ideas and to preview our application, consider a consumption-savings problem

where agents choose their level of consumption and all payoff relevant information is contained

in the current value of the sufficient economic state – the available cash-on-hand y. Our

agents are imperfect problem solvers in the sense that they do not have immediate access to

the optimal solution to this decision-making problem – i.e. the optimal consumption policy

function c∗(y). Therefore, agents face uncertainty about the optimal consumption level in

any given period t, ct ≡ c∗(yt), even though their current circumstances (encoded in yt) are

1See Klaes et al. (2005) for a conceptual history of bounded rationality and Conlisk (1996) for an early
review, among many others (eg. Rubinstein (1998), Todd and Gigerenzer (2003), or DellaVigna (2009)), on
the evidence and challenges in incorporating human cognition as a scarce resource in economics.
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perfectly known.2 This uncertainty is subjective and due to the fact that solving for the true

optimal rule c∗ is cognitively costly, hence agents might not have a perfect grasp of it.

Intuitively, at each point in time, an agent sees her current financial resources yt (and

its history) and asks herself the question: ‘What is my best course of action given current

circumstances?’ Imperfect reasoning leads her to face uncertainty over that answer and act

according to an imprecise guess over the optimal level of consumption. In each period, the

agent can also engage in costly internal deliberation, through which she gets a new (noisy)

idea, or mental information, about the unknown level of the optimal action. She is not sure

that this is the right answer to the question she posed herself, but understands that the more

costly reasoning effort she invests the more precise is her updated guess.3 Moreover, she does

not simply act on the new information she just got, but reflects on it in combination with

any knowledge she has accumulated about optimal consumption behavior through reasoning

about the same question in the past, albeit in the context of different past states of the world

yt−k. In particular, she figures that her past reasoning ideas are likely to be more relevant to

her now if they occurred at past circumstances yt−k that are more similar to her current yt.
4

Methodological contribution. Our key methodological contribution is to model this

reasoning process in a general, yet tractable way. To do so, we represent the unknown

optimal policy function as a projection on a set of kernel basis functions, and assume that

the basis functions and the history of state values are known to the agent. Hence uncertainty

over the optimal action is stemming from uncertainty over the projection coefficients that

effectively define the optimal policy c∗. We then follow insights from machine learning and

Bayesian statistics and assume Gaussian priors over the projection coefficients, allowing us

to conveniently integrate them out and work directly with a closed-form expression for the

implied distribution over the space of functions c∗. Thus, effectively we model the reasoning

process as an abstract ‘as if’ representation in terms of a Bayesian non-parametric functional

2Our interest is thus complementary, but distinct, to a literature inspired by Sims (1998, 2003) that
models imperfect perceptions of the relevant state of the world arising from agents’ limited attention capacity.
A common feature within this approach is that, conditional on beliefs about the state, the optimal policy
function mapping those beliefs into the best perceived action is derived under no additional cognitive cost.

3First, the noisy perception implied by these reasoning signals means that our agents exhibit stochastic
choice, i.e. even conditioning on the same observed circumstance their actions may differ. See Tversky (1969)
and more recently Ballinger and Wilcox (1997) and Hey (2001) for experimental evidence of stochastic choice.
Second, the notion that agents are “resource-rational” and exhibit behavior that is the outcome of limited
but appropriate deliberation, has been advocated as early as Simon (1976).

4This episodic nature of memory has been advocated as a critical psychological feature as early as Tulving
(1972), with the accumulation of evidence reviewed in the surveys by Tulving (2002) and Gershman and Daw
(2017). For example, Plonsky et al. (2015) and Bornstein et al. (2017) document through experiments and
neuroimaging how the current decision is influenced by a past choice whose weight depends not simply on how
recent it is (i.e. a standard temporal difference) but, critically, how this weight is larger if that past choice
occurred in a similar context or circumstance to the current one (i.e. a ’circumstance-based’ difference).
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estimation, which tractably captures the three key features of reasoning we identified earlier.

Specifically, in each period t, reasoning generates a noisy and unbiased signal, ηt, about

the optimal action today c∗(yt). This signal updates beliefs about the whole function c∗, and

the resulting conditional expectation of c∗(yt), in particular, is the agent’s time-t action, as it

is her best guess of the optimal action given today’s state yt. The agent is ‘resource-rational’

in her reasoning, as she optimally chooses the signal precision each period, by trading-off the

reduction in uncertainty over the optimal action achieved by the new signal, and a cognitive

cost proportional to the amount of information carried in that signal, as measured by entropy.

Finally, due to the non-parametric nature of the estimation, while a signal ηt updates

beliefs about the function c∗ over the whole state space, in their time-t update agents optimally

put more weight on past knowledge that was derived in similar situations (i.e. at state values

yt−k close to the current state yt), as opposed to simply ‘recent’ memories (i.e. yt−k for

small k). Thus, our agents display ‘episodic’ or ‘associative’ memory, with past information

being weighted by a similarity notion, which is both an intuitive feature of memory and a

well-documented empirical phenomenon (e.g. Plonsky et al. (2015)).

The key emerging property of our framework is the state- and history-dependence of

subjective uncertainty. In particular, for realizations of the state yt close to the past yt−k where

the agent has already reasoned, the beginning-of-period uncertainty over c∗(yt) is relatively

low, since the agent has accumulated some useful information already. In such “familiar”

parts of the state space, the agent optimally chooses to invest little additional cognitive effort,

and thus, the resulting action is close to her previous-period beliefs about c∗(yt). Through this

interaction of episodic memory and resource-rationality, the model endogenously generates a

dual-type of reasoning (a well-documented psychological phenomenon, eg. Stanovich and

West (2000)): habitual or heuristic behavior in familiar circumstances (i.e a system 1), with a

change to a more deliberative approach in unfamiliar circumstances, in the form of significant

new reasoning effort and thus revision in beliefs and actions (i.e. a system 2).

Applied contribution. To showcase how the proposed costly reasoning friction matters for

observable behavior both at the micro and macro level, we analyze our mechanism in the

setting of the Aiyagari (1994) incomplete markets model of consumption-savings decisions.

The resulting typical behavior is underpinned by a fundamental feedback between the

state-dependent, local reduction in uncertainty and the endogenous dynamics of the state

(i.e. wealth). Namely, when wealth drifts into new and uncertain parts of the state space, an

agent’s conditional beliefs about the optimal consumption function c∗ are likely to change, as

she increases reasoning efforts in response to the increase in uncertainty. On the contrary, if

the accumulated past reasoning signals lead to a policy function estimate that establishes

stable wealth dynamics, and thus a high likelihood for wealth to remain within a particular
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neighborhood, the evolution of beliefs slows down significantly. As wealth fluctuates in such

a familiar, low-uncertainty region, the agent has little incentive to reason much further.

However, without acquiring new precise signals her conditional beliefs largely stop evolving

and remain the same, which in turn perpetuates the stable dynamics in wealth. There are

two such patterns of mistakes that can be self-perpetuating, one that generally characterizes

agents near the borrowing constraint and one that characterizes unconstrained agents.

We call such situations “learning traps”, and they underscore a powerful selection

effect of when agents choose to reason intensely, which leads to a selection in what kind

of errors in the policy function estimates tend to persist and are thus over-represented at

the stochastic steady-state of the model. Due to such selection, the resulting stochastic

steady-state behavior is systematically different from that implied by the full-information

(FI) c∗, in ways that are both empirically promising and important for aggregate dynamics.

First, our costly reasoning model rationalizes the related facts that (i) a surprisingly

high fraction (23% in the data) of households have near-zero net wealth and that (ii)

those households also remain in this effective “Hand-to-Mouth” (HtM) situation persistently

(Aguiar et al. (2020)). This feature of the data is challenging for standard models where

the precautionary motives of agents makes HtM status both very rare and temporary. Our

mechanism is consistent with both features of the data because some of our agents settle

in “learning traps” characterized by a noisy policy estimate that points to a high average

level of consumption near the borrowing constraint, which generates a negative drift in assets

and thus endogenously keeps wealth near the constraint persistently. Without variation in

their circumstances, these agents perceive no further need to reason a lot, perpetuating their

high consumption behavior. Such agents are naturally over-represented in the left-tail of the

ergodic wealth distribution, hence the HtM agents in our model display a habitually high

level of consumption and remain HtM persistently. Furthermore, we show that this behavior

can also rationalize the puzzling lack of adequate savings of agents with temporarily available

liquidity, who are otherwise near the constraint (Ganong and Noel (2019)).

Second, in line with the data, but in contrast to standard frameworks, our model also

produces high MPCs even for rich, unconstrained agents.5 While this consumption property

is usually viewed as a separate theoretical challenge, in our model it arises from the same

general mechanism of endogenous selection of beliefs. In particular, away from the liquidity

constraint, wealth dynamics are endogenously mean-reverting precisely when the agent’s

consumption policy estimate is relatively steep. Intuitively, in such a case the agent tends

to consume “too much” out of high realizations of income shocks, and “too little”otherwise,

5Parker (2017), Kueng (2018), Lewis et al. (2019), Olafsson and Pagel (2018), Fagereng et al. (2020) and
McDowall (2020) document that rich people, even with high liquid wealth, have puzzlingly high MPCs.
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keeping her resulting wealth stable around its average. Thus, the resulting “learning traps”

make high MPC behavior the norm, even for the richest agents. For example, in our model

the average MPC of the richest quintile of agents is equal to 0.15, which is in-line with the

data, and four times higher than in the FI benchmark, where rich agents are essentially

permanent-income-hypothesis consumers.

Finally, we discuss several dimensions through which our mechanism matters in the

aggregate. First, both the large fraction of HtM agents and the high MPC for the wealthy,

unconstrained agents, that our model generats contribute to an empirically relevant, high

aggregate MPC. In particular, in our model the average MPC is 0.29, well in line with

empirical estimates (Carroll et al. (2017)), while the mean MPC for the FI version is counter-

factually low at 0.05. Second, while the beliefs of all agents tend towards a steep policy

estimate and stable wealth dynamics, the differences in the specific history of reasoning errors

across agents means that the eventual steady-state wealth levels around which beliefs and

wealth stabilize is heterogeneous. This leads to significantly larger wealth heterogeneity – for

example, our model displays a Gini coefficient of 0.58, 50% higher than the FI version. Third,

we illustrate the policy importance of modeling bounded, but “resource-rational” agents,

by considering a fiscal stimulus at a time when additional information arrives that lowers

agents’ confidence in their previous reasoning about c∗. We find that in this case the average

MPC falls substantially on impact, as agents abandon their “business-as-usual” consumption

patterns, with implications for policymakers that hope to leverage the usual high MPCs.

2 Related literature

We share the broad interest of modeling mistakes in decision-making with a long tradition

of studying imperfect perception of the relevant state of the world. There are numerous

such approaches, ranging from the Rational Inattention literature inspired by Sims (1998,

2003) where the attention choice is optimal, to work inspired by neuroscience evidence on

the imperfect perception of stimuli (eg. Girshick et al. (2011), Wei and Stocker (2015) and

Woodford (2019)), where the precision is exogenously given. Our paper is closest in spirit

to the optimal inattention approach, as our reasoning choice is similarly resource-rational.

However, the uncertain object agents learn about is different, with that approach maintaining

the usual assumption that agents know the mapping of their (otherwise imperfect) beliefs

about the unobserved state into their optimal actions (see Wiederholt (2010), Gabaix (2019)

and Mackowiak et al. (2020) for surveys and Woodford (2003), Reis (2006), Maćkowiak and

Wiederholt (2009), Gabaix (2014), Matějka and McKay (2014) or Stevens (2020) for specific

modeling examples). In our approach we are specifically interested in relaxing that usual
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assumption of knowing c∗ and modeling uncertainty over the optimal policy function.

In our modeling choices, we first build on a large literature in cognitive sciences (eg.

Gershman et al. (2015), Griffiths et al. (2015) and Shenhav et al. (2017), surveyed by

Lieder and Griffiths (2020)), that promotes the view of human reasoning and cognition as

“resource-rational”, trading off accuracy and cognitive cost in reaching the best perceived

action for a given circumstance. Second, consistent with a large experimental evidence on

stochastic (as opposed to deterministic) choices (see for example Mosteller and Nogee (1951),

Tversky (1969), Ballinger and Wilcox (1997), Hey (2001)), we are interested in modeling

noisy perceptions of the optimal action, and as such we also related to approaches producing

stochastic choice based on bounded rationality (eg. Ratcliff and McKoon (2008), Manzini

and Mariotti (2014) and Woodford (2014), surveyed in Johnson and Ratcliff (2014)). Third,

we connect to extensive evidence in the experimental, psychology and neuroscience literature

(see Tulving (2002) and Gershman and Daw (2017) for surveys) documenting the episodic, or

similarity-based, properties of memory and decision-making. This evidence ranges from early

real-world situations (like chess players in Chase and Simon (1973), or fire-fighters in Klein

et al. (1986)) to recent controlled experiments and neuroimaging (eg. Plonsky et al. (2015),

Bornstein et al. (2017) and Bornstein and Norman (2017)).

In this context, our paper connects to existing modeling approaches in economics

that have been built around this similarity-based property of decision-making, including

the early model of case-based decision theory (Gilboa and Schmeidler (1995, 2001)) and

the recent memory-based anchoring model (Bordalo et al. (2020)). In this view, shared

with the classic computational literature on reinforcement learning (eg. Kaelbling et al.

(1996)), the information that guides agents’ current choices typically takes the form of the

experienced outcomes of past actions and circumstances, making the precision of each signal

naturally fixed, since agents learn only from actual experiences. Instead, in our setup new

information arrives as the outcome of internal deliberation and reasoning, a view shared with

a theory literature exemplified by Aragones et al. (2005) or Alaoui and Penta (2016). The

precision of this type of reasoning information is then naturally under the agent’s control,

and can thus vary, depending on its cost-benefit tradeoff, conditional on a given circumstance.

Conceptually, this allows us to study the interaction between similarity-based learning and

the constrained-optimal choice of the precision of new information over the optimal action.

The joint study of episodic memory and resource-rationality also connects our model

to a large literature and body of evidence in psychology that emphasizes reasoning as a

dual-process (see Stanovich and West (2000) and Evans (2003) for reviews of the evidence

and related theories, and Sloman (1996) and Kahneman (2011) for specific interpretations).

That view describes reasoning as the interplay between a ’System 1’, which is an intuitive,
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associative, habitual mode of decision-making, and a ’System 2’, which activates deliberative

and cognitively-demanding reasoning. Our framework’s key qualitative result is consistent

with this view in that associative/habitual actions are taken in familiar circumstances, where

little (if at all) additional costly reasoning is engaged (thus acting like relying on System 1),

but agents actively deliberate (like in System 2) when faced with un-familiar circumstances.

Our incomplete markets application relates to a large literature aimed at addressing

two well-documented and fundamental challenges for canonical models. First is the puzzling

lack of saving among poor households, which is essentially a statement about the level of

consumption. The typical approach in the literature is to appeal to permanent heterogeneity

in preferences (usually in discount rates) to generate a large mass of ‘spender’ agents with high

average consumption, and thus low steady-state wealth and frequent HtM status (e.g. Krueger

et al. (2016), Carroll et al. (2017), and Aguiar et al. (2020)). The second is to understand why

rich and wealthy households have surprisingly high MPCs and do not smooth out transitory

income shocks, as suggested by the permanent-income-hypothesis (a statement about the

slope of the consumption function).6 Here, liquidity frictions (as in Kaplan and Violante

(2014)) are typically used to account for the high MPC of rich and liquidity-constrained

agents, but typically fall short in explaining the evidence for the liquid wealthy agents (as

argued for example by Kueng (2018), Olafsson and Pagel (2018), Fagereng et al. (2020) and

McDowall (2020)). This shortcoming has spurred recent interest in behavioral models that

can lead to high MPCs even for such rich and liquid agents (e.g. Lian (2020)).

Our paper proposes a complementary mechanism that can jointly and parsimoniously

speak to these challenges by relaxing the common assumption that agents costlessly optimize

over their actions, which results in persistent differences in the perception of the optimal

policy function and hence behavior consistent with the puzzles. In the process, the same

mechanism also delivers significantly larger wealth heterogeneity, in a way that is consistent

with the empirical evidence that emphasizes the role of apparent unobserved heterogeneity

in behavior driving wealth dispersion (e.g. Bernheim et al. (2001), Ameriks et al. (2003),

or Hendricks (2007), and see De Nardi and Fella (2017) for a broader survey). Overall,

understanding these puzzles is central for the macro analysis of incomplete market models,

as they drive the large average MPC that underpins the key propagation mechanism.

Section 3 describes the general framework of costly reasoning. Section 4 introduces the

reasoning friction into the Aiyagari (1994) environment and analyzes its qualitative insights.

A numerical analysis of the model is discussed in Section 5.

6This challenge is further exacerbated in the class of models that aim to explain HtM behavior through
discount-rate heterogeneity (eg. Carroll et al. (2017), Aguiar et al. (2020)), since there the ‘saver’ (high β)
types become the typical wealthy agents, but their stronger incentive to smooth consumption also leads,
everything else constant, to lower MPCs in a non-HtM circumstance, i.e. rich and highly liquid.
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3 General framework

We consider a generic economic situation where an agent chooses an action, denoted as ct, so

as to maximize her expected payoff. The agent is perfectly aware of all payoff-relevant details

of the economic environment, such as her utility function u(c), the set of constraints that

restrict the feasible action ct, and the process and current realization yt of the state variable

relevant for that decision. In other words, the agent knows the full mathematical description

of the maximization problem she faces. Naturally, the solution – the policy function c∗(y)

which gives the optimal action for any realization of the state variable y – follows logically

from the details of the agent’s maximization problem, hence, it might seem tempting to

conclude that the agent must also know c∗(y).

In reality, however, people are subject to cognitive limitations that prevent this. Knowing

a fact does not mean that all of its logical implications are also immediately obvious to

us – deducing such further implications takes time and reasoning effort.7 As economists

we encounter this every time we write down a new model – even though we know all basic

facts about the structure of the problem we ourselves created, the solution and full set of

implications takes time and effort to figure out. Beyond introspection, there is a large and

growing experimental and field evidence that people indeed need time and effort to “solve”

tasks, and that the quality of decision making is negatively affected by the complexity of the

decision problem (see for example Caplin et al. (2011), Kalaycı and Serra-Garcia (2016) and

Carvalho and Silverman (2019) and Stanovich and West (2000) and Deck and Jahedi (2015)

for a recent survey).

To represent the notion that agents perfectly know the objective description of their

environment, but do not immediately know the exact solution to the maximization problem,

we build on general insights from prior decision-theory work (Lipman (1991, 1999)) and

model agents ‘as if’ facing subjective uncertainty about the optimal policy function c∗(y).

Furthermore, we ground the particular modeling details that operationalize this broad idea of

reasoning as the reduction in subjective uncertainty by drawing on empirical insights on how

human reasoning works from psychology and neuroscience, as detailed below. Overall, we thus

view our proposed framework as an ‘as if’ mathematical representation of deliberation that

provides a tractable and disciplined way of formalizing key empirical features of reasoning.

To simplify the exposition, we restrict attention to an economic environment described

by a scalar state y ∈ R and where the action space is also the real line, hence c∗(y) : R→ R.

7In the sense of Hintikka (1975), people thus lack ’logical omniscience’. For example, knowing all axioms
of a given subfield of mathematics does not immediately imply that one also knows all theorems that can be
proved with those axioms. This is despite the fact that the theorems follow logically from the axioms – i.e.
there is no “new” or additional information in the theorems themselves.
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The framework readily generalizes to multivariate settings as discussed in the Appendix.

3.1 Uncertainty about the optimal action

To formalize the notion of uncertainty over the optimal policy function c∗(y), we start by the

general representation of c∗ as the sum of a (complete) set of basis functions,8

c∗(y) = lim
N→∞

N∑
j=1

θjφj(y), (1)

where the set of basis functions {φj} is known, but the projection coefficients θj are unknown.

Hence, when we state that the agent is uncertain about the optimal action at time t, i.e.

c∗(yt) =
∑

j θjφj(yt), that uncertainty is entirely due to the fact that the coefficients θj’s are

unknown, since both the set of φj and the state realization yt are known.

We assume that the agent’s priors over θj are Gaussian and independent of one another,

so θj∼N(µj, σ
2
j ). This helps make the analysis particularly tractable, as it implies that the

resulting distribution over the space of functions c∗ is a Gaussian Process (GP) distribution.

Thanks to this result, we can directly work with a closed-form expression for beliefs over c∗

itself, rather than having to keep track of beliefs about an infinite collection of θj coefficients.9

Lemma 1. If θj follow independent Gaussian distributions N(µj, σ
2
j ), then c∗ has a Gaussian

Process distribution, denoted as c∗ ∼ GP(ĉ0, σ̂0), and meaning that for any pair of state values

y, y′ the joint distribution of the resulting function values is given by:[
c∗(y)

c∗(y′)

]
∼ N

([
ĉ0(y)

ĉ0(y
′)

]
,

[
σ̂0(y, y) σ̂0(y, y

′)

σ̂0(y, y
′) σ̂(y′, y′)

])

where

ĉ0(y) =
∞∑
j=1

µjφj(y); σ̂0(y, y
′) =

∞∑
j=1

σ2
jφj(y)φj(y

′)

Proof. Details are in Appendix A.

The defining feature of the Gaussian Process distribution is that the joint distribution

of the values of the unknown function at any two inputs y and y′ is Normal, with mean and

8A set of basis function is complete when they span the space of functions which we seek to represent, and
hence the infinite sum of basis functions exactly reproduces c∗(y).

9A GP distribution is the limit of the multivariate Gaussian distribution for infinite vectors, and it is often
used as a prior for Bayesian inference on functions (Liu et al. (2011)). In economics, it has recently been used
for non-parametric learning about the distribution of the state (but still assuming knowledge of mapping to
optimal actions) – e.g. Dew-Becker and Nathanson (2019), Ilut et al. (2020) and Kozlowski et al. (2020).
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variance fully characterized by the two functions ĉ0(y) : R→ R and σ̂0 : R2 → R, which are

known in the Bayesian statistics literature as the “mean” and “covariance” functions. These

two functions depend on both the choice of the parameters of the priors for θj (i.e. µj and σ2
j )

and the choice of basis functions φj. The latter is important, as it encodes the agent’s prior

beliefs about the likely functional shapes of c∗ – e.g. if we assume that φj are a set of linear

functions, then we impose the ex-ante assumption that the agent believes c∗ to be linear.10

Naturally, the “mean function” ĉ0(y) specifies the prior mean of c∗(y) for any y. Note

that any difference between the unknown, to the agent, optimal policy function c∗ and the

prior mean ĉ0 represents an ex-ante bias in beliefs. Our motivating properties of reasoning do

not impose structure on this bias and so it represents a degree of freedom for us as analysts.

To eliminate the role of this degree of freedom we center the prior beliefs of the agents

over the true unknown function c∗:

ĉ0(y) = E(c∗(y)) = c∗(y).

Essentially, this means that the agent’s prior beliefs about the θj’s are centered around the

true projection coefficients, and as a result the agent holds no ex-ante bias in her beliefs.11

Nevertheless, the agent of course still faces uncertainty around her mean prior belief

ĉ0(y), and that is encoded by the covariance function σ̂0(y, y
′), which specifies the covariance

between the values of the function c∗ at any pair of inputs y and y′:

σ̂0(y, y
′) = E ((c∗(y)− ĉ0(y))(c∗(y′)− ĉ0(y′))) .

As seen directly from Lemma 1, the level of uncertainty, in the sense of the prior

variance over the value of the function evaluated at any given point y, i.e.

σ̂2
0(y) ≡ Var(c∗(y)) = σ0(y, y) =

∞∑
j=1

σ2
jφj(y)2,

is increasing in the variance of the θj priors – the series {σ2
j}. Naturally, the bigger is the

variance over the unknown coefficients θj , the larger is the ball of uncertainty around the mean

prior belief ĉ0(y), and hence, those parameters govern the overall level of prior uncertainty.

In addition, the covariance function also specifies how the agent believes that the

values of c∗ evaluated at two different points y and y′ are likely to correlate with each other.

10Note that some care needs to be exercised when picking {µj , σ
2
j } and {φj} so that the resulting GP

distribution has well-defined, finite moments. We describe our particular choices further below.
11While our framework allows for general prior shapes of ĉ0(y), the no ex-ante bias modeling choice squarely

identifies the role of costly reasoning to endogenously drive a different ergodic behavior than implied by c∗(y).
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Intuitively, this speaks to the prior belief about the types of functional shapes that c∗ is likely

to take (e.g. linear, polynomial, etc.) and this is controlled by the choice of basis functions φj .

For example, if the set {φj} includes only linear functions, then the beliefs about c∗(y) and

c∗(y′) are perfectly correlated across the state space because a shift in beliefs about the value

of the function at some point y directly implies a shift in beliefs about c∗(y′) at all other y′.

Formally, in this case a change in the estimate of one θj implies a change in the estimate of

the slope of c∗ everywhere, and hence changes the estimated level of c∗(y) for all y.

Thus, the choice of {φj} effectively governs the way the agent extrapolates information

about the value of the function c∗ at a point y to its value at another point y′. To discipline

this choice, we are guided by a growing body of evidence based on both experiments and

neuroimaging, which shows that at a basic neurological level the brain learns to solve problems

and make decisions by drawing on specific individual, or ‘episodic’, memories that are relevant

to the current task (see Plonsky et al. (2015), Bornstein et al. (2017), Bornstein and Norman

(2017) and the survey in Gershman and Daw (2017)). A similar conclusion of primarily

drawing on “similar” memories during the decision-making process also emerges from studies

focused on traditional field evidence (like chess players in Chase and Simon (1973), fire-fighters

in Klein et al. (1986); see Tulving (2002) for a survey on this psychology literature).

To operationalize the idea that such ‘episodic’ or ‘associative’ memory plays a crucial

role in the learning process, we assume that the basis functions the agent uses are a collection

of Gaussian kernels centered uniformly over the whole real line, i.e. we set

φj = exp(−ψ(y − rj)2),

where rj is the “node” around which the j-th basis function is centered. Substituting these

kernels into equation (1), the learning problem is essentially equivalent to the statistical

problem of a Bayesian, non-parametric kernel regression. The non-parametric nature of

the estimation is crucial to capturing the notion of episodic memory, as inference in non-

parametric methods is naturally localized and the value of each piece of information is specific

to its location in the state space. We provide formal derivations in Section 3.3, after we

define the nature of the “data” or reasoning information the agent has access to.

Importantly, this choice of basis functions also makes our learning framework both

general and tractable.12 The non-parametric nature of the estimation does not impose any

ad-hoc functional form assumptions on the underlying c∗ (e.g. linearity), and moreover,

the set of Gaussian kernels is very flexible and is able to approximate arbitrarily well any

12We thus relate to increased interest in the cognitive and neuroscience literature (eg. Lucas et al. (2015)
and Gershman and Daw (2017)), in using Bayesian non-parametric, kernel regressions as a general way to
model learning over potentially complex functions that is also characterized by similarity-based inference.
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continuous function (i.e. it satisfies the Universal Approximation Theorem). Despite this

generality, with the additional assumption that σ2
j are equal for all j, the setup is quite

tractable, as the infinite sum defining the covariance function reduces to a simple expression.

Corollary 1. Assuming that for every N , {φj}Nk=1 is a set of Gaussian kernels, with the

same precision ψ and with means rj that are uniformly distributed in the interval [−N,N ],

and that θj follow the independent Gaussian distributions N(µj,
σ2
c

N
), then in the limit N →∞

σ̂0(y, y
′) = σ2

c exp(−ψ(y − y′)2).

Essentially, the combination of independent Gaussian priors over θj that have the same

variance, but potentially different means, and Gaussian kernels as the basis functions {φj}, is

a convenient pair of “conjugate priors”, which lead to a closed form, and tractable distribution

over c∗ itself.13 Specifically, this distribution is characterized by two parameters. First, σ2
c

controls the prior uncertainty about the value of c∗(y) at any given point y, capturing the

“quantity” of uncertainty agents face around ĉ0(y). Second, ψ controls the extent to which

information about the value of the function at a point y is informative about its value at a

different point y′. Formally, ψ controls the bandwidth of the underlying kernels, with a higher

ψ resulting in a lower bandwidth and thus information being more localized. Intuitively, a

higher ψ means that agents are unwilling to extrapolate far, hence information about the

value of the function at a particular point y, i.e. c∗(y), is less informative about the value of

the function at other y′ 6= y as the distance between y′ and y increases.

Overall, the proposed framework puts only very weak restrictions on the agents’ prior

beliefs over the unknown policy function, and it is thus portable and applicable to a wide

range of economic problems. By avoiding the need to select specific functional forms for the

prior, which can easily differ from the actual optimal policy function in a specific economic

application, learning is thus not a-priori misspecified.14 In that way, our agents are not

systematically “fooled” ex-ante, and their priors are consistent with the underlying true c∗.

A second sense in which our proposed framework is general is more subtle, but important

in applications. Because all payoff relevant variables and constraints are observed, the model

allows us to easily study applications with meaningful constraints on the set of relevant

13Our setup is closely related to a long literature in Bayesian statistics on non-parametric functional
estimation, known as Gaussian Process Regressions or kriging, which uses the same priors as us, because of
their attractive combination of flexibility, tractability and degrees of freedom (see Rasmussen and Williams
(2006)). The kernel representation of the state space also has many computational benefits, which allow one
to efficiently handle approximations of policy functions over large and complex state space and also learn
with sparse and little data, both of which are real life features (e.g. Powell (2007), Gershman et al. (2015)).

14Thus, in contrast to a literature on learning under misspecification (eg. Gagnon-Bartsch et al. (2020)),
our later insights on ergodic “learning traps” do not arise from updating an a-priori misspecified distribution.
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actions, such as budget and borrowing constraints. For example, in the consumption-savings

application we discuss below, agents observe their income y and understand how a budget

constraint imposes a deterministic restriction between any given consumption policy function

c(y) and an implied savings rule a(y) = y− c(y). As a result, given the primitives on the prior

beliefs (e.g. σ2
c and ψ), there is no change in the structure of uncertainty facing the agent

whether reasoning occurs over over c∗(y) or over the optimal savings rule a∗(y), since the

latter case is simply a deterministic translation of the Gaussian Process distribution over c∗(y)

to one over a∗(y) = y − c∗(y). Thus, the model delivers equivalent behavioral implications

either way. In contrast, if the state y is imprecisely perceived, as it is often assumed in the

canonical literature on imperfect information, such equivalence may not hold.15

3.2 Noisy reasoning signals and updating beliefs

The agent does not simply act on her prior beliefs, but in any given period t can deliberate

on the optimal course of action, which produces additional information about the unknown

optimal action c∗(yt). In this way, through time, the agent gradually learns more about the

unknown policy function. We model the outcome of the reasoning process as an unbiased,

but noisy, signal about the actual optimal action at the current state yt

ηt = c∗(yt) + εt,

where εt
iid∼ N(0, σ2

η,t). The variance of the signal noise, σ2
η,t, is endogenous, and chosen by

the agent subject to an information cost that we detail later. Formally, the reasoning signals

reduce perceived uncertainty by updating the agent’s beliefs about the unknown function c∗,

with the conditional distribution of beliefs following a tractable Kalman-filter like recursion.

Lemma 2. Given the time-0 prior belief c∗ ∼ GP(ĉ0, σ̂0), the time-t conditional beliefs

c∗
∣∣{ηt, yt} are distributed as ∼ GP(ĉt, σ̂t) with moments given by the recursive expressions

ĉt(y) = ĉt−1(y) + αt(y)(ηt − ĉt−1(yt)), (2)

σ̂t(y, y
′) = σ̂t−1(y, y

′)− αt(y)σ̂t−1(y
′, yt) (3)

where ĉt(y) ≡ Et(c
∗(y)|ηt) and σ̂t(y, y

′) ≡ Cov(c∗(y), c∗(y′)|ηt) are the posterior mean and

covariance functions, σ̂2
t (y) ≡ σ̂t(y, y) denotes the posterior variance at a given y and

15The typical assumption in the consumption-savings literature on imperfect perception of wealth is to let
savings be the residual action that simply clears the otherwise imperfectly perceived budget constraint (see
for example Sims (2003) and Maćkowiak and Wiederholt (2015)). However, in a model of inattention, Reis
(2006) shows that behavior is different when the residual action is consumption as opposed to savings.
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αt(y) ≡ σ̂t−1(y, yt)

σ̂2
t−1(yt) + σ2

η,t

is the effective signal-to-noise ratio of the time-t signal ηt.

Proof. Details are in Appendix A.

We thus model reasoning as a form of ‘fact-free’ learning – our agent already knows

all objective payoff relevant information, as encoded in the sufficient state variable yt. Her

deliberation efforts instead help her deduce specific implications of these objective facts for

her optimal course of action, and thus reduce the subjective uncertainty she faces.16 A more

intense reasoning effort helps the agent obtain a better sense of the ‘right answer’ of the

question what to do right now, i.e. a more precise estimate of the unknown optimal action.

In addition, to the extent to which the outcome of reasoning is noisy and imperfect,

this process of internal deliberation implies that ultimately agents exhibit stochastic choice

as they act on their eventual updated beliefs (as we detail below). Thus, consistent with a

large experimental evidence on such probabilistic (as opposed to deterministic) choices, even

conditioning on the same observed state (and history) agents’ actions may differ.17

3.3 The local nature of information and learning

A fundamental feature of our framework is that information is ‘local’, in the sense that

information about the value of the optimal policy at a point y, i.e. c∗(y), is less informative

about the value of the function at other y′ 6= y as the distance between y′ and y increases.

This is due to the underlying non-parametric nature of the estimation, and can be seen most

directly in the fact that the prior covariance function is decreasing in the distance ||y − y′||.
As a result, in period t, when agents update beliefs about the optimal action at their

current circumstances (c∗(yt)), those updates put a higher weight on reasoning signals ηt−k

for which yt−k is closer to the current situation, i.e. a lower ||yt − yt−k||. Thus, agents rely

more on past information derived in situations that are similar to the current one, as opposed

to not weighing or simply putting more weight on ‘recent’ memories (i.e. ηt−k for small k).

16Reasoning is thus simply internal reflection that helps the agent get closer to the optimal decision even
without what an outside observed would register as new objective information. We share this view with a
theory literature such as Aragones et al. (2005) and Alaoui and Penta (2016). Our specific implementation
of this concept allows us to further represent internal deliberation as a tractable Bayesian non-parametric
regression, subject to episodic memory and resource rationality, as we detail further below.

17See Mosteller and Nogee (1951), Tversky (1969), Ballinger and Wilcox (1997), Hey (2001) among others
for evidence and Ratcliff and McKoon (2008), Manzini and Mariotti (2014), Woodford (2014) for recent
modeling approaches based on bounded rationality, surveyed more generally in Johnson and Ratcliff (2014).
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To get some intuition, notice that by iterating on equation (2) the updated belief at

time-t can be expressed as a weighted sum of signals ηt−k and the unconditional prior ĉ0(y):

ĉt(y) = (1−
t∑

k=0

ωt−k(y))ĉ0(y) +
t∑

k=0

ωt−k(y)ηt−k (4)

where the time-t weight on each of the ηt−k signals is given by

ωt−k(y) ≡ αt−k(y)
t∏

s=t−k+1

(1− αs(y)).

This weight depends on the value of y for which beliefs are updated, and in particular any

given signal ηt−k has the strongest effect on beliefs ĉt(y) for y values close to the particular

state realization yt−k where the reasoning signal ηt−k was obtained (thus maximizing αt−k(y)).

To illustrate, in Lemma 3 below we consider the two straightforward cases of updating

beliefs at times t = 1 and t = 2, when the agent updates based on one and two reasoning

signals respectively. For simplicity of the exposition, in this Lemma we assume that the

signal-noise variances of the two signals is the same: σ2
η,1 = σ2

η,2 = σ2
η, but this is not essential.

In the first case, at t = 1, the weight on η1 is a particularly clean and revealing expression,

which directly showcases the fact that the updating weight on a signal is the highest in the

neighborhood of the state realization at which the signal was obtained. In the second case,

at t = 2, the updating weights on the two signals η1 and η2 are more complicated and less

intuitive visually (we leave the formulas to the Appendix), but they still imply the basic

result that when agents update beliefs about the optimal action at some state value y, the

update puts a higher weight on whichever of the two signals is closer. Similar results can be

proved for the case of arbitrarily many signals and arbitrary signal-noise variances σ2
η,t.

Lemma 3. At time t = 1, the single signal η1 gets a weight ω1(y):

ω1(y) =
σ2
c

σ2
c + σ2

η

exp(−ψ(y − y1)2).

The posterior variance is hence the lowest at y = y1, and increases with ||y − y1||:

σ̂2
1(y) = σ2

c (1− ω1(y)).

At t = 2, the update incorporates two signals, and puts a higher weight on the closer signal:

ω2(y) > ω1(y) if and only if ||y − y2|| < ||y − y1||
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Proof. Details are in Appendix A.

To visualize the basic result, Figure 1 plots the resulting posterior mean and variance

functions at t = 1 and t = 2, when η1 contains a positive surprise and η2 a negative one (the

two circles) – intuitively, the “surprise” in the signal is akin to the agent getting an idea or

insight about the problem that he is trying to solve that differs from his prior. For example,

thinking about a consumption-savings application, a positive “surprise” would mean that the

agent deduces his prior belief about consumption is sub-optimally low, and that he should be

consuming at a higher level.

Starting with the update based on one signal, the blue line in panel (a) shows that

ĉ1(y) is indeed most affected by the positive surprise in η1 in the neighborhood of where

that signal is centered – i.e. for y close to y1. Moreover, conditional on both signals, e.g.

ĉ2(y) (red line), the updated belief is high in the neighborhood of signal η1, but low in the

neighborhood of η2, showcasing how in different parts of the state space the agent largely

relies on different signals, thus displaying episodic memory. The resulting state- and history-

dependent uncertainty reduction can be seen most directly in panel (b), where we plot the

posterior variance, which is the lowest in the part of the state space where the signals are

centered, and rises back to the unconditional variance in the far parts of the state space.

Figure 1: Conditional beliefs and episodic memory
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This local effect of information is both interesting and empirically relevant, given the

evidence on the importance of ‘episodic memory’ reviewed earlier (e.g. Tulving (2002)). That

is, both in the data and in our model, agents appear to put higher weight on specific memories

(signals in our framework) that are similar to the current circumstances (i.e. current state).
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Another feature of the local nature of information is that if two past signals are observed

in proximity to one another, the posterior uncertainty can be the lowest in the neighborhood

between the two signals (as illustrated by the red line in panel (b)).

Corollary 2 (Spillovers). There is a threshold τ > 0 s.t. if ||y1 − y2|| < τ then

σ̂2
2(y) < σ̂2

2(y1) = σ̂2
2(y2),∀y ∈ (y1, y2), and moreover

∂τ

∂ψ
< 0

Intuitively, the agent can be more confident about the optimal action at in-between

states y, because she can effectively rely on both prior instances of reasoning at y1 and y2, as

those two noisy signals effectively “bracket” the implied optimal action for y ∈ (y1, y2). The

extent to which that such “bracketing” is effective depends on the agent’s prior belief of how

granular and situation-specific past deductions are. When experiences and knowledge are

highly specific (high ψ), then separate signals are not very informative for the in-between

ground. On the other hand, if the agent believes the true optimal to be a relatively smooth

function (low ψ), then having two prior anchor points is very useful for updating the middle.

3.4 The cost-benefit tradeoff of reasoning

Having described the uncertainty over the unknown function c∗(y) and the outcome of

the reasoning process, we close our model by introducing an intuitive cost-benefit tradeoff

in choosing the reasoning noise variance σ2
η,t. This choice reflects the agent’s intensity of

deliberation – the more time and effort spent on thinking about the optimal behavior, the

more precise is the resulting signal, and thus the more accurate are the resulting posterior

beliefs. In this view, agents are “resource-rational” and choose the optimal amount of

cognitive effort, given its cost and expected benefit. This approach is not only intuitive,

but also supported by a wealth of empirical evidence documented in the cognitive sciences

literature – for example, Levy and Baxter (2002) show that the basic physiological processes

of the brain itself trade-off metabolic cost with resulting accuracy (see Lieder and Griffiths

(2020) for a broader review of the evidence, and Gershman et al. (2015), Griffiths et al. (2015),

and Shenhav et al. (2017) for specific examples).

To operationalize this idea, we model the costly cognitive effort as an information cost.

In particular, any given signal ηt carries an utility cost that is proportional to the amount

of information about the optimal action c∗(yt) revealed by that signal, where we measure

information flow as the reduction in entropy, i.e. Shannon Mutual Information,

H(c∗(yt)|ηt−1)−H(c∗(yt)|ηt, ηt−1) =
1

2
ln

(
σ̂2
t−1(yt)

σ̂2
t (yt)

)
, (5)
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where H(X) denotes the entropy of a random variable X, and is the standard measure

of uncertainty in information theory (eg. Sims (2003)). Thus, equation (5) measures the

reduction in uncertainty about the unknown optimal action c∗(yt) from seeing the new signal

ηt, given the history of past deliberation signals ηt−1. The implicit assumption here is that

cognitive effort is directly proportional to the resulting information about the optimal action.

To model the “benefit” of the costly reasoning process, we draw on a long tradition in

costly information models and assume that the agent is facing a standard tracking problem

where, given the known state yt, the agent wants to choose her action, ct, to be as close

as possible to the action implied by the unknown optimal policy function, c∗(yt). Thus, in

choosing her action at in any given period t she minimizes the expected squared deviations

min
ct,σ2

η,t

Et(ct − c∗(yt))2, (6)

where Et denotes the conditional expectation over the distribution of c∗ with moments

recursively determined by equations (2) and (3). The solution to the tracking problem is to

act according to the best estimate of the unknown optimal action, and thus set ct = ĉt(yt).

Given this choice of time-t action, the expected quadratic deviation from the optimal in any

given period is simply the posterior variance under the agents beliefs: Et(ct− c∗(yt))2 = σ̂2
t (y).

Thus, the cost-benefit tradeoff of reasoning can be cast as the information problem

min
σ̂2
t (yt)

σ̂2
t (yt) + κ ln

(
σ̂2
t−1(yt)

σ̂2
t (yt)

)
, (7)

s.t. σ̂2
t (yt) ≤ σ̂2

t−1(yt).

The first component is the benefit of reasoning, in the form of a lower dispersion of the

action ct around the unknown optimal action c∗(yt) – i.e. σ̂2
t (yt). The second represents the

cost of reasoning, which is proportional to the information content of the new time-t signal,

with the parameter κ controlling the implied constant marginal cost of a unit of information.

For example, κ will be higher for individuals with a higher cost of deliberation – either

because they have a higher opportunity cost of time or because their particular deliberation

process takes longer to achieve a given improvement in precision. In addition, κ would also be

higher if the economic environment facing the agent is more complex, and thus the optimal

action is objectively harder to figure out – for example solving a difficult math problem.

Lastly, the minimization in (7) is subject to the “no forgetting constraint” σ̂2
t (yt) ≤

σ̂2
t−1(yt) which ensures that the chosen variance of the noise in the signal, σ2

η,t, is non-negative.

Otherwise, the agent can gain utility by “forgetting” some of her past information.
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The optimal deliberation choice that solves equation (7) is given by

σ̂∗2t (yt) = min
[
κ, σ̂2

t−1(yt)
]
,

meaning that the optimal level of posterior variance which equates the marginal benefit and

cost of reasoning is simply κ. Intuitively, the desired precision in actions is larger when the

deliberation cost κ is lower. The min function enforces the no-forgetting constraint – if the

agent’s beginning-of-period conditional variance over the optimal action at yt is lower than

the optimal target κ, then she does not acquire any further information and the posterior

variance at time t remains equal to σ̂2
t−1(yt). This leads to the following optimal behavior.

Proposition 1. The optimal signal noise variance is given by

σ∗2η,t =


κσ̂2
t−1(yt)

σ̂2
t−1(yt)−κ

, if σ̂2
t−1(yt) ≥ κ

∞ , if σ̂2
t−1(yt) < κ

(8)

and this in turn implies the time-t action

ct = ĉt(yt) = ĉt−1(yt) + α∗t (yt)(c
∗(yt) + εt − ĉt−1(yt)), (9)

where the optimal weight put on the new reasoning signal, α∗t (yt) depends on the current state

yt and the history {yt−1, σt−1η } of past signals’ location and precision:

α∗t (yt) ≡
σ̂2
t−1(yt)

σ̂2
t−1(yt) + σ∗2η,t

= max

[
1− κ

σ̂2
t−1(yt)

, 0

]
. (10)

Proof. Details are in Appendix A.

Thus, since posterior uncertainty σ̂2
t (y) is state and history dependent, both the optimal

reasoning choice, in the form of signal-noise variance σ2
η,t, and the effective action ct are also

state- and history-dependent.

The key qualitative implications of our framework are driven by this endogenous state

and history dependence of actions and beliefs. In particular, for state realizations yt where the

precision of initial beliefs is far from its target (high σ̂2
t−1(yt)), the agent chooses to acquire a

more precise current signal ηt and hence puts a bigger weight on it in the resulting action

ĉt(yt) (high α∗t (yt)). In contrast, for state realizations close to the position of previous signals

ηt−k, the precision of initial beliefs is high (low σ̂2
t−1(yt)) and the agent finds it optimal to not

acquire much additional information. At such ‘familiar’ states the optimal α∗t (yt) is relatively

small, and the resulting action will be primarily driven by the beginning-of-period beliefs
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ĉt−1(yt). By equation (10), the optimal α∗t (yt) may even become zero when the accumulation

of prior reasoning information around yt is sufficiently strong, as highlighted by Corollary 2.

This basic feature of the reasoning intensity choice gives rise to behavior that appears

to follow a ‘habitual’ form in familiar parts of the state space, where prior deliberation has

reduced uncertainty about the optimal action sufficiently so that α∗t (yt) is small. However,

agents do not mechanically follow such past-experience based heuristics – beliefs are likely to

be revised if the state yt moves into unfamiliar territory, where uncertainty over the optimal

action is relatively high. In that case, the agent chooses a high precision of the current period

signal, and thus a high α∗t (yt), leading to behavior driven by the outcome of the new reasoning

effort, rather than past deductions. In this way, the model is endogenously generating a

System 1/System 2 type of decision-making (an established psychological phenomenon, e.g.

Stanovich and West (2000)), with heuristic-like behavior in familiar circumstances (akin to

System 1), with a change to a deliberative approach in unfamiliar circumstances (System 2).

Towards observable implications. Overall, the main qualitative features of our framework

center around the results that (a) in more familiar circumstances agents have lower incentives

to reason anew about what is the best course of action, and (b) due to their noisy perceptions

they may end up with different views on the optimal action. While these properties are

grounded in extensive evidence from behavioral economics, neuroscience and psychology, the

particular implications about observable behavior crucially depend on what is the distribution

of the state variable, and hence what is the familiar part of the state space.

To get some intuition, consider first the case where yt follows an exogenous distribution

independent of the reasoning errors. Since both the prior and the signals are centered at the

true c∗, the updated beliefs in equation (4) become

ĉt(yt) = ĉ0(yt) +
t∑

k=0

ωt−k(yt)(ηt−k − ĉ0(yt)) = c∗(yt) +
t∑

k=0

ωt−k(yt)εt−k.

Because reasoning errors are idiosyncratic, they wash out on average, and therefore,

while there is still noise in observed behavior (i.e. at any given instance ĉt(yt) 6= c∗(yt)),

the typical behavior, i.e.
∫
ĉt(yt)dε

t, is not systematically different from the full-information

c∗(yt). This finding echoes a common argument that the rational model might be a good

approximation of aggregate behavior, even if individual agents are making mistakes.

In contrast, our mechanism implies that observed behavior can be systematically altered

when the history of mistakes affects the evolution of the state - for example, consumption

choices affect the accumulation of wealth through the budget constraint. In that case, there is

a correlation between the path of errors εt−k and that of the encountered states yt−k. In turn,

this affects the optimal reasoning intensity σ2
η,t and hence generates a correlation between the
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weight put on a signal ηt−k in the update of beliefs and the error realization of that signal.

As a result, the typical estimate, and thus behavior, is no longer guaranteed to equal

c∗(yt), as the signal errors do not necessarily wash out. The particular observable implications,

measured by an outside analyst as the joint distribution of actions and states, depend on

the broader economic structure and the way errors feed into the law of motion of the state.

To examine this feedback in detail, in the next section we consider an application of our

framework to a canonical consumption-savings problem, a mechanism which is often at the

heart of macroeconomic models and naturally features an endogenous state – wealth.

4 A consumption-savings model with costly reasoning

To explore the feedback mentioned above and emphasize, in particular, the effects of hetero-

geneity stemming from the reasoning errors, we study consumption-savings behavior subject

to our reasoning friction in the setting of incomplete markets.

To this end, we consider an otherwise standard Aiyagari (1994) economy populated by

a continuum of ex-ante identical households, indexed by i, that share the same preferences

in the form of a non-satiable and concave utility u(ci,t) of consumption. Each household

inelastically supplies her stochastic endowment of labor si,t at a constant wage w. These

income shocks si,t are iid across time and agents and drawn from a time-invariant distribution

S with a mean of one. The agents’ ability to reduce their consumption exposure to this risk

is limited - there is only one asset, in the form of a homogeneous physical capital that earns

a constant rental rate r̃ and depreciates at rate δ ∈ (0, 1). The resulting budget constraint is

ci,t + ai,t = (1 + r)ai,t−1 + wsi,t,

where r ≡ r̃ − δ, ai,t−1 is the amount of capital held by agent i at the end of period t − 1

and ai,t is the current choice of savings. As in standard models of incomplete markets, this

optimal asset choice is subject to a borrowing constraint a ≥ 0 such that

ai,t ≥ −a.

The aggregate production function is also standard - it takes as input the average capital

K =
∫
aidi and employment H =

∫
si,tdi, and produces KαH1−α, with α ∈ (0, 1). The role

of this side of the economy is to determine the rental rate and the wage from the usual

firm first-order conditions r̃ = αKα−1H1−α and w = (1− α)KαH−α, respectively. Given the

assumed inelastically supplied labor and i.i.d. labor supply shocks sit, we have H = 1.
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4.1 Decision problem

We first describe the optimal policy function under full information, which the households

try to estimate subject to the reasoning friction developed in Section 3. The assumption of

i.i.d. exogenous income shocks si,t means that the sufficient state for the agent’s decision is

the available “cash-on-hand” defined as

yi,t ≡ (1 + r)ai,t−1 + wsi,t.

The key property here is that the future state yi,t+1 is determined partly endogenously from

the current choice of consumption ci,t, as well as by the random realization of si,t+1.

Each agent is interested in solving the same general problem

V (yi,t) = max
ci,t,ai,t

u(ci,t) + βEtV (yi,t+1), (11)

subject to the budget constraint ai,t + ci,t = yi,t and the borrowing limit ai,t ≥ −a.

The consumption policy function that solves the problem in (11) can be written as

c̃∗(yi,t) = min(yi,t + a, c∗(yi,t)), (12)

where the kink at yi,t +a arises from the borrowing limit. The policy c∗(yi,t) gives the optimal

action taking into account future borrowing constraints, but ignoring today’s constraint.

Reasoning friction

As in the general framework of Section 3, households do not have free cognitive access to

the full-information policy function c∗, but perfectly observe their financial resources yi,t, the

borrowing constraint a, and estimate the unknown function c∗ via costly reasoning signals

ηi,t = c∗(yi,t) + εi,t, εi,t ∼ N(0, ση,i,t). (13)

Agents have the common time-0 prior that c∗ ∼ GP(ĉ0, σ̂0), which as discussed earlier is

centered at the truth, i.e. ĉ0 = c∗, and has the covariance function σ̂0 as in Corollary 1.18

An agent i at time t makes two choices: reasoning intensity, by selecting the desired

signal-noise variance σ2
η,i,t, and consumption level ci,t. In choosing the precision of the

reasoning signal ηi,t, the agent optimally trades off its cost and benefit, as described in detail

18The underlying full-information policy c∗ is not affected by the reasoning friction. Because the signals
ηi,t in equation (13) are drawn from that policy, the interpretation here is one of a bounded rational agent
that is ’naive’ (in the terminology of O’Donoghue and Rabin (1999)).
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in Section 3, and optimally selects a signal precision that generates the posterior variance

σ̂2
i,t(yi,t) = min

[
κ, σ̂2

i,t−1(yi,t)
]
. (14)

By Proposition 1, the optimal choice of σ2
η,i,t, together with beginning-of-period beliefs

ĉi,t−1(yi,t) and σ̂i,t−1(yi,t), lead to the following conditional expectation of c∗(yi,t):

ĉi,t(yi,t) = ĉi,t−1(yi,t−1) + αi,t(yi,t)(c
∗(yi,t) + εi,t − ĉi,t−1(yi,t−1)), (15)

where the optimal weight put on the current reasoning signal ηi,t can be expressed as

αi,t(yi,t) = max
[
1− κ/σ̂2

i,t−1(yi,t), 0
]
. (16)

Lastly, taking into account the borrowing limit is straightforward as the agent perfectly

observes yi,t + a, and hence the actual consumption is19

ci,t = min(yi,t + a, ĉi,t(yi,t)).

Heterogeneity and equilibrium

Agents in our economy are heterogeneous for two reasons. The first is the idiosyncratic

income shocks si,t, which are a common feature of standard models too. The second reason is

that agents obtain stochastic histories of reasoning errors εi,t, leading to different information

sets {ηti} and perceived optimal decision rules ĉi,t(y). Therefore, the distribution of agent

types in the costly reasoning model is richer than in the standard full information Aiyagari

(1994) model. In particular, an agent’s type at time t is characterized by the following: (i)

prior conditional variance and consumption functions σ̂2
i,t−1 and ĉi,t−1; (ii) observed cash on

hand yi,t = (1 + r)ai,t−1 + wsi,t; and (iii) current period reasoning error εi,t. We denote the

set of objects that determine an agent state at time t as τi,t ≡ (σ̂i,t−1, ĉi,t−1, yi,t, εi,t) .

Moreover, the heterogeneity in conditional actions (as opposed to states) in our costly

reasoning model is also different compared to the full-information model, where the agents

act under the same policy function c∗(y) and only differ in their actions due to transitory

differences in their states yi,t. In our model instead, agents also differ in their effective policy

function ĉi,t(y), and this systematically changes the properties of the average behavior and

also the wealth distribution in the long-run.

19The Gaussian noise in signals suggests that extreme signals can lead to a negative estimate: ĉi,t(y) < 0.
In the numerical implementation we prevent this by imposing another constraint that ci,t > 0. In practice,
we find that this is not a problem at our calibration.
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In other words, even though the reasoning errors are iid across agents, the interaction

between the errors and the endogenous law of motion of individual states implies that the

reasoning errors matter in the aggregate. To make this point concrete, we denote by λt(τ) the

time-t probability distribution over the agent types τi,t and note that the constrained-optimal

behavior of the agents induces a law of motion for λt(τ). We are interested in characterizing

the properties of this distribution at the stationary equilibrium, which we define below.

Definition 1. A stationary equilibrium is a full-information policy function c∗(y), a probability

distribution λ(τ) and positive real numbers (K, r, w) , such that

(1) the time-invariant prices (r, w) satisfy

r = αKα−1 − δ; w = (1− α)Kα.

(2) the policy function c∗(y) solves the full-information problem in equation (11)

(3) the reasoning choice σ2
η,i,t and the consumption choice ci,t satisfy Proposition 1,

while conditional beliefs ĉi,t(y) and σ̂i,t(y, y
′) follow Lemma 2.

(4) given yi,t and a consumption choice ci,t, cash on hand evolves as yi,t+1 = (1 +

r) (yi,t − ci,t) + wsi,t+1, where si,t+1 is an iid draw from the time-invariant distribution S.
(5) the distribution λ(τ) is time-invariant, with a law of motion induced by (1)-(4).

(6) aggregate capital equals the average of the households’ asset decisions

K =

∫
τ

[y − c (τ)] dλ(τ).

4.2 Selection effects in updating beliefs

To build intuition for the properties of the stationary equilibrium, here we illustrate the basic

mechanism by following the sequence of choices and beliefs evolution of two agents, who are

identical except for the realization of their reasoning errors, εi,t – i.e. they face identical

income shock realizations si,t and initial conditions ai,0.

At time-1 both agents choose the same reasoning effort, which by equation (14) is such

that σ2
η,i,1 = κ/α∗1 . Thus, the time-1 reasoning signals the agents draw have the identical

distribution ηi,1 = c∗(y1) + εi,1 , εi,1 ∼ N(0, κ/α∗1). Here α∗1 ≡ α1(y1) = 1− κ
σ2
c

is the resulting

signal-to-noise ratio, which does not depend on the value of y1 since σ̂2
0(y) = σ2

c for all y.
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Period 1: ex-post heterogeneous beliefs

At time-1 agents are ex-ante identical and choose the same reasoning effort, but make different

consumption choices due to the idiosyncratic realizations of the reasoning errors:

ci,1 = min[y1 + a, c∗(y1) + α∗1εi,1].

At this stage observed behavior across agents only differs due to the iid shock εi,1, which

would wash out on average. However, the reasoning signals do not only generate stochastic

choice, but also lead to systematic differences in the policy function estimates ĉi,1(y) across

the state space, which leads to persistent differences in the savings rates and thus affects

the future wealth accumulation of the two agents. In particular, using equation (2) agent i’s

conditional estimate of the policy function for any value of y is

ĉi,1(y) = c∗(y) + exp(−ψ(y − y1)2)α∗1εi,1.

The key qualitative differences arise from a difference in the signs of εi,t. To showcase

this, for the purposes of this example we assume that agent 1 receives a signal with a positive

error (ε1,1 ≡ ε > 0), while agent 2 receives a signal with a mirror-image negative error

(ε2,1 = −ε < 0).20 As the reasoning errors εi,1 makes the two agents over- or under-estimate,

respectively, optimal consumption at all states y, we label agent 1 as a “consumer” or C, and

similarly label agent 2 a “saver” or S.

To illustrate, in Figure 2 panel (a) we plot the updated estimates of the policy function

ĉi,1, for agent C (in blue) and agent S (in red), as induced by the reasoning signals ηi,1. The

blue and red circles represent the respective actions taken at time-1, ci,1, and also mark the

position of y1 in this example. We also plot the full-information policy c∗ (solid black line),

and the dotted line plots the action implied by the borrowing constraint, i.e. c(yi,t) = yi,t + a.

Figure 2, panel (a) shows that agent C updates beliefs upward and ends up with an

“over-consumption” bias relative to the (common) prior belief c∗(y) throughout the state

space, while the opposite is true for agent S. The plot also showcases that the shifts in the

estimated policy functions ĉC,1(y) and ĉS,1(y), relative to the prior beliefs c∗(y), are strongest

at cash-at-hand values y close to y1 – e.g. notice that the estimates ĉi,1(y) converge to c∗(y)

for large y. Again, this reflects the local nature of the reduction of uncertainty.

To see this local reduction in uncertainty directly, consider the resulting posterior

20To simplify exposition and intuition, we assume throughout this illustration that ε is small enough so
that agent 1 does not hit the borrowing constraint with his time-1 action.
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Figure 2: Conditional beliefs at t = 1
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variance function σ̂2
i,1, which is the same for both agents due to their identical choice of σ2

η,1:

σ̂2
i,1(y) = σ̂2

1(y) = σ2
c (1− α∗1 exp(−2ψ(y − y1)2)). (17)

This function is plotted in Figure 2, panel (b) and has a characteristic U-shape that visualizes

the state and history dependence of posterior uncertainty. The state-dependence is embodied

in the fact that σ̂2
1(y) is not a constant function, but varies with the value of the state y. The

history dependence is due to the fact that σ̂2
1(y) is increasing in the distance between y and

y1, the state at which the time-1 signal is most informative.

Policy estimates and savings rates

The state and history dependence of uncertainty interacts with the endogenous dynamics of

yi,t because cash-on-hand depends not only on concurrent income shocks, but also on the

effective savings rate of an agent as determined by his consumption choices.

In particular, we define the savings rate as the expected change in cash-on-hand

Et(yi,t+1)− yit = (1 + r)(yi,t − ĉi,t(yi,t)) + w. (18)

To visualize how any given policy estimate ĉi,t(y) affects the savings rate, we define the

counter-factual policy function, cRW (y), that implies a savings rate of zero. If an agent

was to follow that consumption rule, then his cash-on-hand will be a random walk, i.e.

Et(yi,t+1) = yi,t. We can back this policy out, by setting equation (18) to zero and obtain:
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cRW (yi,t) =
r

1 + r
yi,t +

1

1 + r
w, (19)

We plot this object with the dash-dot line in Figure 2. If an agent follows a consumption

rule that lies above cRW (y) then that agent’s wealth is expected to fall (i.e. has a downward

drift on average), and if an agent’s consumption policy lies below, then he is actively saving

and assets are expected to grow on average. In particular, using equations (18) and (19):

Et(yi,t+1)− yit = (1 + r)(cRW (yi,t)− ĉi,t(yi,t)).

Hence, the cash-on-hand value at which a consumption policy crosses the cRW (y) line

from below (i.e. an upcrossing) is also the steady-state level of wealth that an agent following

that policy is tending towards. This cash-on-hand value is also known as the “target buffer-

stock” in the terminology of Carroll (2004), and it is a stable point that cash-on-hand reverts

to, because whenever current financial resources are above that level, then the consumption

policy is above cRW (y), hence wealth has a downward drift and vice versa.

Under full information, there is a unique steady-state level of cash-on-hand that all

agents tend toward, which we call ȳ∗, given by the intersection of the solid black line (c∗(y))

and the dash-dot line (cRW (y)) in Figure 2. In that model, any wealth heterogeneity is only

due to transitory income shock realizations, not due to differences in systematic savings rates.

In contrast, in our model agents generally have different steady-state wealth levels ȳi,t

due to the dispersion in their policy function estimates ĉi,t(y). For example, from Figure

2 we see that the over-consumption bias in agent C’s beliefs and the under-consumption

bias in agent S’s beliefs lead to differences in their long-run wealth levels, as implied by

their respective intersections with cRW (y), with the “consumer” tending towards a lower

steady-state wealth: ȳC,t < ȳ∗ < ȳS,t. Thus, our model displays wealth heterogeneity both

due to luck (i.e. idiosyncratic income shocks) and due to differences in saving rates, which

result here from differential consumption policy estimates.

Period 2: selection effects and systematic heterogeneity

The time-1 differential savings rates of our two example-agents result in different time-2

wealth levels, even though the new, time-2 income shock is the same for both, specifically:

yC,2 = (1 + r) (y1 − cC,1) + ws2 < (1 + r) (y1 − cS,1) + ws2 = yS,2. (20)

Importantly, on top of generating additional heterogeneity, the differential saving rates also

interact with the state dependent optimal reasoning choice, as summarized by Proposition 2.
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Proposition 2. The optimal reasoning intensity and the weight of the new signal in updating

beliefs are both increasing in distance from location of the previous reasoning signal:

∂σ2
η,i,2

∂||yi,2 − y1||
< 0 and

∂αi,2(yi,2)

∂||yi,2 − y1||
> 0.

Therefore, agent C reasons more than agent S, i.e. αC,2(yC,2) > αS,2(yS,2), if and only if

s2 < 1 +
(1 + r)

w
(c∗(y1)− cRW (y1)) ≡ s̄

Proof. Details are in Appendix A.

The first result in Proposition 2 follows directly from Proposition 1 and Lemma 3.

By Proposition 1, the optimal variance of the reasoning error is σ2
η,i,2 =

κσ̂2
1(yi,2)

σ̂2
1(yi,2)−κ

and the

resulting signal to noise ratio is αi,2(yi,2) = 1− κ
σ̂2
1(yi,2)

. Given that the variance function σ̂2
1(y)

is lowest at y1 and U-shaped around it (e.g. Figure 2 and Lemma 3), an agent i chooses

to reason more the larger is the distance ||yi,2 − y1||. Intuitively, if an agent finds herself

facing a significantly different level of cash-on-hand than the level at which she reasoned

previously, then uncertainty about the current optimal action is higher and will warrant

further reasoning than otherwise.

The change in wealth, however, is not simply a function of the size of the exogenous

income shock, but also depends on the savings rate, and this is what underpins the second

result of Proposition 2. Since agent C’s has a negative savings rate and thus a negative

drift in wealth, we can show that he experiences a larger shift in his state variable, i.e.

||yC,2− y1|| > ||yS,2− y1||, if and only if the time-2 income shock is low enough – si,2 = s2 < s̄.

Such “low” realizations of current income essentially compound the effects of the

“over-consumption” bias of agent C and his resulting low savings rate, and thus pushes his

cash-on-hand even further away from y1 than otherwise. On the other hand, such a “low”

income shock acts to counter-balance the “under-consumption” bias of agent S, hence limiting

the change in her cash-on-hand. Thus, in this situation, agent C faces higher uncertainty

about his time-2 optimal action as compared to agent S, i.e. σ̂2
1(yC,2) > σ̂2

1(yS,2), and hence

agent C chooses to reason with a higher intensity.

As a result, given s2 < s̄, agent C updates his beliefs by more, as seen in panel (a)

of Figure 3, where we plot the time-2 updated beliefs ĉi,2(y) (solid line) together with the

previous period estimates ĉi,1(y) (dashed lines). Since in this case αC,2(yC,2) > αS,2(yS,2) (as

per Proposition 2), the change in beliefs of agent C is substantially bigger than the revision in

agent S’s beliefs, which hardly change (red dashed line vs solid red line) as the latter chooses

to acquire little new information. Naturally, the reverse behavior would emerge when s2 > s̄.
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Figure 3: Conditional beliefs evolution
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In that case, agent S faces a more unfamiliar part of the state space than agent C, for whom

an unexpectedly large shock s2 effectively moves him back towards the familiar state y1.

Learning traps and long-run behavior

These results showcase that there is a selection in when the two agents choose to revise beliefs.

The differential savings rates interact with new income shock realizations so that agents with

positive savings rates are more likely to significantly revise beliefs after a positive income

shock has pushed their wealth significantly above past wealth levels, and vice versa.

This has important implications for the long-run beliefs. Take agent S for example. On

average this agent is likely to experience a drift up in wealth, and accumulate new information

mainly at such higher wealth levels. Since the new signals are unbiased and her initial policy

function estimate is low (which characterizes her as a “saver”), the new information will tend

to revise her belief up, towards the true c∗(y).

Importantly, however, uncertainty reduction is local, and the new signals will mainly

update the estimated policy locally to the higher wealth levels at which the new signals arrive.

Thus, rather than a uniform shift of beliefs up, the revisions will instead change the estimated

policy at higher levels of cash-on-hand y, while largely preserving the low estimate in the

neighborhood of the initial wealth y1. Hence, even as the target wealth level ȳS,t changes as

new information arrives (since then the intersection point of her estimate ĉS,t(y) with ĉRW (y)

changes) the evolving beliefs are still likely to result in a target wealth ȳS,t above the initial

wealth y1, and thus agent S maintains her positive drift in assets.

As agent S builds wealth, she reaches the vicinity of her target ȳS,t. In that neighborhood,
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the stochastic nature of income shocks are bound to eventually push her cash-on-hand level

yS,t above ȳS,t. By the characteristic property of ȳS,t as a target, the agent then exhibits a

negative savings rate, and thus a downward drift in asset. Critically, this downward drift

tends to move the state back into a part of the state space that is now “familiar”, in the

sense that the agent has experienced such lower levels of wealth in the past, and has already

reasoned up to the optimal amount there. Because of this familiarity, she is unlikely to choose

to reason much again, and will instead behave according to the policy estimate she enters

the period with. Thus, as the agent has now reduced uncertainty to his target levels on both

sides of her current target wealth level ȳS,t, she settles in a stable stochastic steady state,

where assets fluctuate around that intersection point and beliefs are not likely to change by

much anymore (unless the agent experiences large shocks).21

We label this situation a “learning trap”. Its defining feature is a sequence of reasoning

signals that establishes stable wealth dynamics in the neighborhood of those same signals’

positions, and thus a high likelihood for the agent’s wealth to remain within this “familiar”

part of the state space. As wealth fluctuates in that low uncertainty region, the agent has little

incentive to reason further. But without new signals beliefs remain the same, perpetuating

the consumption behavior that keeps wealth stable within this region to begin with. While

all agents are likely to eventually fall in such a learning trap and largely stop updating beliefs,

the heterogeneity in agents’ histories of signals and income shocks will lead to significant

cross-sectional dispersion in the eventual stable target wealth levels ȳi,t.

For example, consider the case of agent C instead. The interaction of initial negative

savings rate and state dependent reasoning choice will, on average, lead to revision of beliefs

that preserves a low target wealth level. Eventually, income shocks would also push this agent

to reason on both sides of that low target level, which will then get established as a stable

steady-state and become his familiar region of the state space. Importantly, an outsider that

analyzes this agent’s behavior will observe a pattern of habitually (and surprisingly, from the

perspective of c∗) high level of consumption at that persistently low level of wealth.

Overall, for some agents their crossings and target wealth levels are low and close

(or even at) the borrowing constraint, while for others these levels are significantly higher

than the full-information steady state wealth ȳ∗. We illustrate this observation in panel

(b) of Figure 3, where we show the resulting estimates of agent C and S after 100 periods.

While agent S has a long-run belief that implies a target wealth level significantly above ȳ∗,

21Technically, this stability of wealth does not occur with probability one because of the exogenous income
shocks si,t, which can in principle take a large enough value (i.e. positive in the case of this saver agent) to
push the agent outside of the familiar region implied by the upward crossing. These large shocks may thus
lead the agent to further update her beliefs, changing the target wealth ȳS,t, even if those updates may be
small in nature. We quantify these statements in our numerical analysis.
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agent C has retained a policy function which implies a target level significantly below ȳ∗.

In fact, because agent C’s policy estimate is above cRW up until it hits the constraint, that

target wealth level is in fact the constraint itself, a property that in Section 5 we connect

to the empirical puzzle of the lack of savings by poor agents. Moreover, the Figure also

illustrates the insight that once the agents settle in their learning traps they do not reason

much anymore, i.e. the dotted lines are virtually indistinguishable from the solid lines.22

Two key agent types: (1) hand-to-mouth & (2) rich with high MPC

Two key qualitative features of the long-run beliefs are worth nothing. First, agent C settles

around a stochastic steady state level ȳC which is close to the constraint. Hence, this type of

agent will exhibit behavior that looks akin to “hand-to-mouth” persistently. In contrast, the

full-information model will only generate hand-to-mouth agents due to bad luck, in the sense

of a sequence of low income shocks. Such hand-to-mouth status is temporary, as agents will

aggressively save to move back towards ȳ∗ (notice that c∗(y) is significantly below cRW (y)

near the constraint, signifying a high savings rate under full-information). In contrast, in our

model hand-to-mouth behavior is a persistent characteristic, and one that will be helpful in

distinguishing between models when we discuss the quantitative results.

Second, consider the rich agents and their marginal propensity to consume (MPC),

or formally the local slope of the consumption policy function, measuring the consumption

change after an unexpected income shock. In the full information case, by the well known

result that the slope of c∗(y) converges to that of cRW (y) as y gets big, the MPCs of rich

agents is very low – close to r/(1 + r).

In contrast, in our model, because local steepness makes wealth dynamics stable, the

slope of the policy estimate ĉi,t(y) around their target wealth level ȳi,t ends up being high.

Thus, in our model rich agents are characterized by both high target wealth levels and by

high MPCs. Their typical past savings behavior is to accumulate assets, summarized by

the high observed steady-state level ȳi,t. Their typical current behavior is the high slope of

the estimated ĉi,t(y), which means these rich agents aggressively (i) consume out of positive

income shocks and (ii) reduce their consumption when hit by negative shocks, a behavior that

keeps their wealth stable. In this section we have used the example of agent S to illustrate

this joint dynamics of wealth accumulation (see panel (a) in Figure 3) and eventual high

local MPC (in panel b). As we quantify and argue in Section 5 this result of high MPC for

rich agents is of large significance for this class of models.

Both of these characteristic qualitative features of our model, dispersion in target

22Visually, the prior (dotted red line) in panel (b) is different than the solid red line of panel (a), indicating
that some reasoning has occurred from the earlier time 2 to this illustrated current period.
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wealth levels and excess sensitivity of consumption, differentiate the framework from the

standard approach of imperfect observation of the state. In that case, as analyzed for example

by Luo (2008), consumption under-reacts to income shocks (i.e. lower MPC than in the

full-information model). The intuition is straightforward – agents observe y imprecisely,

hence they respond weakly to income shocks and thus consumption exhibits inertia, a key

result in the literature on inattention. Moreover, even though agents in that framework are

confused about the actual value of y, they still all tend to the same long-run stochastic steady

state, hence do not display dispersion in target wealth levels. As we show below, both of our

model-implied features are borne out in the data.

To fully evaluate and quantify the properties of our learning mechanism we now turn

to a numerical implementation of the stationary equilibrium of our economy, and describe

the resulting ergodic joint distribution of states, actions and beliefs.

5 Numerical analysis

Whenever possible, we follow the standard parametrization considered in Aiyagari (1994).

Households have log-utility with a discount factor of β = 0.96. The i.i.d. labor income shock

is drawn from a log-normal distribution ln(si,t) ∼ N(−σ2
s

2
, σ2

s), with σs = 0.2, and there is

no borrowing allowed, i.e. a = 0. On the production side, the capital share and the annual

depreciation are set to standard values of α = 0.36 and δ = 0.08, respectively.

Next, we turn to the parameters governing the reasoning friction. First, to help with

the otherwise slow and long history-dependent evolution of beliefs of individual agents in

the computation of the stationary steady state, we introduce a form of discounting of past

reasoning signals. We opt for the tractable modeling assumption that agents face i.i.d. Poisson

information shocks, where with probability θ an agent’s history of accumulated reasoning

signals becomes obsolete and that agent’s beginning-of-period beliefs reset to the time-0 prior.

One interpretation of this discounting scheme is based on viewing agents as finitely lived,

where conditional on death, the agent transfers his assets and the resulting continuation utility

off to the offspring. However, the transfer of reasoning information about the optimal policy

is imperfect across generations, which for simplicity we assume leads to full discounting of

past information. In our parametrization we set θ = 0.02, so that the economy is continuously

repopulated with agents that on average re-start their learning problem every 50 years.

Second, as also discussed in Section 3, we aim to reduce the degrees of freedom intrinsic

in specifying the prior beliefs, through restrictions that resemble the rational-expectations

idea of utilizing “model-consistent” priors, as follows. First, the common prior mean function

ĉ0(y) is set equal to the full-information policy function c∗(y). This leaves us with the
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parameters σ2
c and ψ of the covariance function σ̂0(y, y

′), which govern the uncertainty around

ĉ0(y). We set these equal to what an econometrician would estimate if he were to observe

simulations from the model. In particular, we look for a fixed point such that given the

values of {σ2
c , ψ}, if an econometrician uses the resulting ergodic distribution of reasoning

signals ηi,t as data, he would recover the same values of {σ2
c , ψ} as used to simulate ηi,t. This

essentially restricts the assumption on prior uncertainty to be model consistent, and also has

a connection with the practice of estimating hyper-parameters in Bayesian statistics. More

details on this fixed-point procedure are given in the Appendix.

Employing this model-consistent priors strategy, we calibrate the remaining degree of

freedom, namely the marginal cost of reasoning κ, by exploiting the tendency for agents in

our model to settle in “learning traps”. Among other things, these traps link our mechanism

to one particularly challenging fact - while empirically the bottom 20% in the US wealth

distribution have roughly zero net assets, standard model predicts that very few agents should

be in that position due to strong precautionary saving motives (see Krueger et al. (2016) for

a discussion). This insight motivates us to set κ to target this moment, given the fixed-point

restriction over {σ2
c , ψ} and the other parameters described above.

Putting everything together, the resulting calibration for the reasoning parameters

is {σ2
c , ψ, κ} = {0.77, 0.05, 0.48}. Those values suggest that agents indeed face non-trivial

amount of uncertainty in the optimal policy (σ2
c > 0) and its shape (ψ > 0). The rest of this

section discusses the implications of this model parameters in terms of the resulting reasoning

behavior and the joint distribution of observables, i.e. wealth and consumption.

5.1 Reasoning properties in the stationary equilibrium

As previously discussed in Section 4.2, reasoning slows down when wealth dynamics become

locally stable to a “familiar”, low-uncertainty region of the state space. We now detail the

characteristics of the resulting “learning traps” in the ergodic distribution, and in the process

quantify some of the qualitative statements we have made in that Section 4.2.23

To operationalize the definition of what constitutes a “learning trap”, we first compute

the target wealth level ȳi,t−1, as implied by the point at which the policy function estimate

that an agent i enters period t with, ĉi,t−1(y), crosses the counter-factual policy rule cRW (y):

ĉi,t−1(yi,t−1) = cRW (yi,t−1), (21)

23To compute the stationary distribution we iteratively simulate an economy with 10,000 periods and 5,000
agents, and search for the values of the interest rate r and wage w which satisfy the definition of stationary
equilibrium in Section 4. We compute the reported moments over the last 5,000 periods of the simulation.
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Second, we define the agent i at time t to be in a “learning trap” if the uncertainty

function he enters the period with evaluated at the crossing point yi,t−1 is such that

σ̂2
i,t−1(yi,t−1) ≤ κ. (22)

In this case, the prior uncertainty over the optimal course of action is low enough at yi,t−1

so that at time t the agent would optimally choose not to reason further at this state and

set the optimal reasoning intensity to zero, αi,t(yi,t−1) = 0.24 In contrast, if condition (22) is

reversed, then we refer to an agent i at time t as not in (or, out of) a learning trap.

The intuition behind our operational definition of learning traps is the following. First,

the crossing point yi,t−1 gives agent’s i hypothetical state value such that if the agent enters

the period with cash-on-hand equal to yi,t and acts according to her prior policy estimate,

then her cash-on-hand remains unchanged on average, i.e. Et−1(yi,t) = yi,t−1. Second, if in

that situation the agent would also choose not to reason further, then her policy estimate

does not change either: ĉi,t(y) = ĉi,t−1(y). Finally, due to the local nature of uncertainty

reduction and the accumulation of prior information, if condition (22) holds it is likely to also

hold in a neighborhood around ȳi,t−1 (per the insight on spillovers in Corollary 2). In that

case, uncertainty is low not only exactly at ȳi,t−1 but also more generally around it and thus

the agent will find it optimal to not update beliefs for a range of y close to ȳi,t−1, leading to

her state and beliefs to jointly stabilize, in a stochastic steady-state sense, around yi,t−1.
25

We evaluate this intuitive behavior by providing moments in Table 1 on the long-run

characteristics of such learning traps. We first describe these moments for all agents and

then we will also further condition on agent’s wealth entering period t, the key state variable.

Ergodic properties of learning traps

In Panel (A) of Table 1 we first report that about 70% of agents in the ergodic distribution are

in such learning traps. Moreover, on average, the first time an agent i enters a learning trap is

one-third into the agents’ typical lifetime. Once they enter into this state, the probability of

a typical agent to ever exit that first trap is roughly 30%. Thus, learning traps are ubiquitous

in the ergodic distribution and most agents do not even exit the very first one they encounter.

In Panel (B) of Table 1 we report moments on the reasoning choices, cash-on-hand

behavior and MPCs for agents currently in and out of a learning trap. First, we show that

24As exemplified in Corollary 2, the inequality in equation (22) may be strict when the knowledge spillovers
present in the accumulation of prior reasoning information around yi,t−1 are sufficiently strong.

25A particular implication is that on average the actual cash-on-hand yi,t is indeed close to yi,t−1 for
people defined as being in a “learning trap”. We show that this is indeed true below. We did not choose an
operational definition of learning trap based on a distance metric between yi,t and yi,t because that would
require an ad-hoc assumption on what is a “small” distance.
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our operational definition of learning traps is indeed picking up agents who find it optimal to

do very little additional reasoning in the current period – for agents inside the trap updated

beliefs ĉi,t(yi,t) put a typical weight of just αi,t = 0.002 on new reasoning signals ηi,t. This

update is significantly smaller than for agents outside the trap, who have a typical αi,t = 0.043.

To put these magnitudes in context, we note that the largest reasoning intensity occurs in

the first period of any agent’s life (at α = 1− κ/σ2
c = 0.376), when the prior uncertainty over

c∗(y) is at its highest. Compared to this initial learning, agents’ learning eventually slows

down but it does so significantly more for agents who find themselves in a learning trap.

Second, we find that for agents inside a trap find themselves at an average distance from

their steady-state cash-on-hand, |yi,t − yi,t−1|, that is much smaller than for agents outside

of a learning trap: 0.48 vs 4.05 respectively. This highlights that our operational definition

of a learning traps indeed picks up agents that are both close to their target wealth-level

and find that region “familiar” and hence see little need for further reasoning.26 In contrast,

agents outside a learning trap are far away from their target wealth level ȳi,t−1, and thus still

transitioning and, on average, face higher uncertainty as their wealth keeps drifting.

Third, the notion of agents settling in a learning trap we described in Section 4.2 also

implies that they should not only stay close to yi,t (which can move over time as the policy

estimate ĉi,t(y) gets updated), but should also remain in the same overall neighborhood of

the state space. And indeed, because agents in a learning trap only adjust beliefs slightly in

a typical period, their crossing point also barely moves – in Table 1 we find that the mean

absolute change |yi,t − yi,t−1| for agents inside a trap is 0.04, dramatically smaller than the

0.629 for agents currently outside a current trap, whose beliefs are still evolving.

Fourth, our endogenous reasoning mechanism makes agents settling into learning traps

a probabilistic statement. As indicated for example by Proposition 2, the local nature of

uncertainty reduction leads to less intense reasoning in familiar states. Since part of the

current cash-on-hand yi,t is determined stochastically, through the income shock si,t, it follows

that the extent to which yi,t remains in a previously familiar territory is a stochastic event,

even conditional on assets ai,t−1, prior beliefs ĉi,t−1(y) and σ̂2
i,t−1(y). In Table 1 we report

that the probability of being outside a learning trap at t+ 1, conditional on being in one at t

is positive, but nevertheless very small, at 0.8%.27 While exiting a trap is thus very unlikely,

the probability of entering one at t+ 1, conditional on currently being out of it, is significantly

26Even if agents would have exactly converged to this stochastic steady state in period t− 1, their current
state yi,t would move around it simply due to the current exogenous income shocks wsi,t, with a standard
deviation of 0.23. Thus, in terms of magnitudes, this exogenous variation accounts for about half of the
typical difference |yi,t − yi,t−1| of 0.48 for agents inside the trap, with the other half being the result of the
endogenous wealth accumulation in the ergodic distribution

27Note that this moment looks one period ahead, and conditions on a trap encountered at any point in
time, and thus it is different from the exiting moment report in Panel (A).
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larger, at 6.5%. Put together, these two conditional probability define the model’s implied

ergodic transition matrix of agents moving in and out of a current learning trap.

Finally, in concluding Section 4.2 we noted that the mechanism produces two qualitative

features that directly speak to observable variables that have been of particular interest to

macroeconomists and can help connect the model to the data. First, the model produces

a mass of agents that are persistently “Hand-to-Mouth” (HtM), as those agents that settle

in learning traps at target wealth levels ȳi,t close to (or even at) the borrowing constraint.

Second, the manner in which agents away from the constraint establish stable wealth dynamics

is via consumption policy estimates that are significantly steeper locally than r/(1 + r), thus

the model is predicted to generate surprisingly high MPCs for wealthy, unconstrained agents.

To evaluate these predictions and further understand the inter-workings of the mecha-

nism, next we split the agents in our simulation by their wealth entering period t. In particular,

to facilitate links with the empirical evidence, we follow Zeldes (1989) and Aguiar et al. (2020)

and define an agent as being in a HtM status if her beginning-of-period net worth ai,t−1 is

less than two months of labor earnings, and to be non-HtM otherwise.28

Moments All agents HtM Non-HtM

(A) Frequency
Unconditional prob to be in a trap 0.702 0.878 0.653
Mean first time in trap/life length 0.317 0.224 0.338
Prob to ever exit the first trap 0.29 0.105 0.331
(B) Conditional on being in or out of a trap

In Out In Out In Out
Mean reasoning αi,t 0.002 0.043 0.001 0.062 0.002 0.041
Mean deviation |yi,t − yi,t−1| 0.482 4.049 0.431 1.049 0.5 4.342
Mean change |yi,t − yi,t−1| 0.041 0.628 0.008 0.101 0.053 0.68
Prob switch out/in at t+ 1 (%) 0.81 6.48 0.09 8.10 1.07 6.42
MPC at time t 0.354 0.152 0.791 0.825 0.177 0.109

Table 1: An agent at time t is in (or out) of a learning trap if condition (22) holds (or reversed). The two
columns ’All agents’ report ergodic moments conditional on being in/out of a trap for all agents. The two
columns ’HtM’ report the corresponding in/out moments only for agents whose ai,t−1 < w/6, while the
’Non-HtM’ columns report moments for the rest of the agents.

Learning traps across HtM status

The insights of how learning traps manifest themselves differently for HtM or non-HtM

agents relate to the intuition of section 4.2. First, we report in Panel (A) of Table 1 that

28With i.i.d. risk, in our annual model this threshold is w/6, where w is the stationary equilibrium wage.
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the frequency of learning traps is more pronounced for the former type (88% of which are

inside a trap vs 65% for non-HTM), experience earlier their first trap (22% into their typical

life) and are significantly less likely to exit it (at 10%) than non-HtM agents. The reason is

two-fold – near the constraint the optimal policy agents learn about is steeper and hence it is

more likely to establish a steep upward-crossing estimate ĉi,t(y) for low y, and at the same

time, the constraint itself can help stabilize wealth dynamics by acting as an absorbing state.

As introduced earlier, a distinctive implication of our mechanism are the surprisingly

high MPCs of agents that have settled around high target wealth levels ȳi,t. Table 1 quantifies

this by showing that for the group of non-HtM agents the average MPC is 0.18 when inside a

learning trap, but only 0.11 when outside of one. This showcases that a crucial feature of

settling inside a learning trap is a consumption policy estimate with a significantly higher

local slope than r/(1 + r). Thus, the model indeed generates a surprisingly high MPC for

wealthy, unconstrained agents, which we argue in Section 5.2 is both an important empirical

feature, and one that sharply differentiates our model from the bulk of the literature.

Lastly, another interesting implication of the model is that there is a significant amount

of heterogeneity in both MPCs and saving rates even conditional on current wealth levels.

For example, the last two columns of Table 1 shows that the MPCs of the non-HtM differ

significantly between agents in and out of learning traps. Moreover, the fact that agents

outside of a learning trap are still transitioning towards their eventual (and dispersed) target

wealth level generates significant heterogeneity in saving rates.29

5.2 Joint distribution of wealth levels and consumption functions

We now discuss several important observable implications of the mechanism. In particular, we

argue that even in the context of an otherwise simple model a-la Aiyagari (1994), our costly

reasoning (CR) mechanism significantly improves upon its full-information (FI) counterpart

along two key dimensions: (1) more frequent and persistent hand-to-mouth (HtM) status, and

(2) higher marginal propensities to consume (MPC), especially for wealthy, unconstrained

agents.30 In the process, the CR model also delivers larger wealth inequality overall.

Wealth distribution

We start by briefly discussing our mechanism’s implication for wealth heterogeneity. Panel

(a) of Figure 4 plots the stationary distribution of assets ai in the benchmark CR economy

(red line) and the counter-factual FI economy (blue line). A striking difference between the

29Recent studies by Lewis et al. (2019) and Bach et al. (2017), which document significant heterogeneity in
consumption behavior orthogonal to wealth levels, provides suggestive evidence of these features of the model.

30The FI model has the same sequence of income shocks, but there is no uncertainty over c∗ (i.e. σ2
c = 0).
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Figure 4: Wealth distribution.

two distributions is the large mass of low wealth agents in the CR model. Another notable

qualitative difference is the larger density of rich agents in the CR model compared to the FI

economy, exemplified by the slower decay of the right tail in the asset distribution. A key

reason for the increased wealth dispersion, both in the left and right tails, is the dispersion

in target wealth levels ȳi, shown in panel (b). Naturally, in the FI case this is a degenerate

distribution with a single mass point, as all agents tend towards the same steady-state wealth.

In our model, however, ȳi is heterogeneous across agents, and its dispersion is similar to the

overall heterogeneity in wealth (comparing panels (a) and (b)).

As a summary statistic for wealth inequality, we find that our benchmark model

produces a significantly higher Gini coefficient (at 0.58), bringing the model half-way from

its FI counter-part (at 0.39) to the US data (at 0.77, as reported by Krueger et al. (2016) for

PSID in 2006). The model is still some ways short of the data, but this is not surprising given

that we have intentionally chosen to present our mechanism in a stylized setting, with very

simple income and asset structures. And consistent with the intuition above, a significant

portion of this dispersion is due to the dispersion in target-wealth levels - the Gini coefficient

of the distribution of ȳi is 0.49, or 84% of its value for the overall wealth distribution.

Hence, target wealth levels play an important role in both generating poor and rich

agents in our model, consistent with empirical work such as Bernheim et al. (2001), Ameriks

et al. (2003), or Hendricks (2007), which emphasizes such ’unobserved’ heterogeneity. Through

the lenses of the learning traps implied by our model, this heterogeneity reflects persistent

differences in the perception of the (otherwise common) policy function.
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Ergodic beliefs

With this ergodic wealth distribution in mind, we now characterize the typical cross-sectional

consumption behavior. We do so by showcasing the typical shapes of the agents’ estimated

consumption policy functions, evaluated in the neighborhood of the state that agents find

themselves in the ergodic distribution. As we have argued earlier, it is precisely the endogenous

selection of beliefs through time that makes this joint ergodic distribution of (state, beliefs)

interesting and fit the data better than the FI model.31 To help summarize the key insights,

we average policy estimates across two groups of agents, HtM and non-HtM, as defined

earlier. This dichotomy helps leverage some key commonalities in the consumption behavior

of agents within those two types in our model, and is also useful when connecting to the data

and other models, as we describe below. In particular, we compute

ĉgroup(x) ≡
∫
i∈group

ĉi(yi + x)di, (23)

where the group defines being currently either in a HtM -status or non-HtM status, respectively,

and yi is the cash-on-hand value for agent i in the stationary distribution.32

Thus, ĉgroup is the average policy estimate as a function of deviations from the ergodic

value of cash-on-hand for agent i – i.e. the function ĉgroup(x) evaluated at x = 0 given the

average action of agents in that specific group at their own individual level of yi. By varying

x, we extract the typical shape of the policy function around yi for agents inside the specific

group. We also similarly compute the average shape of the optimal c∗group(x) and the PIH

policy cRWgroup(x) in the neighborhood of yi, by substituting in the functions c∗(y) and cRW (y),

respectively, for ĉi(y) inside the integral of equation (23).33

The constructs ĉgroup(x) will pick up the key systematic patterns of consumption

behavior across agents in a given group. If the noise in estimates around the typical cash-

on-hand values yi is random across agents, then ĉgroup(x) would also equal c∗(y). However,

31As we detail in the Appendix, the cross-sectional average of policy function estimates,
∫
ĉi(y)di, equals

the true optimal policy c∗(y) for any y. This occurs because, for any given y, some agents over-estimate,
while others under-estimate, the optimal consumption c∗(y), depending on their own history of income shocks
and signal realizations. Thus, this result highlights that there is no mechanical average bias in the estimation
procedure. Importantly, however, this unconditional average policy estimate is not representative of the
typical consumption behavior. Indeed, due to the interaction between wealth and reasoning errors, the agents
that are close to any given level of the state y at the stationary distribution are not randomly selected, as
emphasized throughout this section and previously in section 4.2.

32We generally drop the subscript t to refer to the cross-sectional stationary distribution. Note also that
yi 6= ȳi, but as seen in Table 1, most agents are indeed close to their stochastic steady state ȳi on average.

33The Appendix shows similarly constructed average typical policy functions ĉgroup(x) by wealth quintile
instead. This more granular grouping approach yields very much the same results, hence for simplicity we
focus the main text on the dichotomy between HtM and non-HtM.
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Figure 5: Ergodic Policy Estimates

(a) Average estimated policy function for HtM

-1.5 -1 -0.5 0 0.5 1 1.5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

C
o
n
s
u
m

p
ti
o
n
 (

c
)

(b) Average estimated policy function for non-HtM
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Figure 5 shows that this is not the case.34

Large and persistent mass of hand-to-mouth agents

First, in panel (a) of Figure 5 we plot the typical ergodic policy function for the HtM group.

A striking feature is that the typical estimate of our boundedly rational agents differs from

c∗(y) primarily in its level, not shape, and in particular we note the sharp ranking

ĉHtM(x) > cRWHtM(x) > c∗HtM(x). (24)

Thus, these low-wealth agents are not only typically significantly over-estimating optimal

consumption, but are also, on average, de-accumulating assets (since ĉHtM(x) > cRWHtM(x),

implying a negative saving rate).

This showcases that the typical HtM agent in our model looks very much like the

example-agent C from Section 4.2. These agents have accumulated a sequence of signals

that lead to an excessively high estimate of the consumption policy function, and thus a low

saving rate. Hence, these agents also remain in this HtM status persistently, as their low

saving rates (or equivalently low target wealth ȳi,t) keep their assets low. As their assets

cycle in this now ‘familiar’ environment, they see no further need for reasoning, and thus

become ‘habitually’ high consumption/low-asset type of agents. On the other hand, because

the shape of the estimated policy function is similar to c∗(y), their effective MPCs are very

similar to that of a full-information agent that also finds himself in a HtM situation. The

34The x-axis is in terms of deviations from the ergodic value of cash-on-hand, and we plot a range of +/-
five standard deviations of income shocks (i.e. w ∗ σl = 0.24) around yi.
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difference is that the systematically low saving rates of our HtM agents ensure that this is

both a persistent state and also one that is prevalent in the stationary distribution.

In contrast, under full-information agents save aggressively when close to the constraint

(i.e. c∗(y) is significantly lower than cRW (y) when assets are low), hence in that model HtM

status is due to a long sequence of low income shocks, which is both a low probability and

transitory status, as agents quickly build up their wealth once income shocks mean-revert.

This well-known feature of the standard incomplete markets model makes it challenging for

it to generate a large fraction of hand-to-mouth agents in the stationary distribution (as

emphasized for example by Krueger et al. (2016) and Aguiar et al. (2020)).

Importantly, as argued convincingly by the recent work of Aguiar et al. (2020), the large

fraction of poor, “hand-to-mouth” households in the data appears to be primarily driven by

systematically lower savings rate among those households, rather than transitory outcome

of bad income shocks or persistent differences in income processes. In Table 2, panel A, we

demonstrate that due to the bounded rationality mechanism discussed so far, our model is

able to quantitatively match several of these key features of the data on HtM households.

First, in the stationary distribution of the costly reasoning model 23% of agents are

HtM which matches the data up to a rounding error. In contrast, in the full-information

counter-part of our model, the ergodic mass of HtM agents is just 1% – more than an order

of magnitude smaller than that in the data.

Crucially, both in the data and in our model HtM status is not only prevalent, but

also very persistent at the individual level. We connect to the empirical results Aguiar et al.

(2020) by first regressing the expected future consumption growth of agents on their current

HtM status, a regression that we replicate in our simulations by estimating:

∆ ln ci,t+2 = β0 + β1HtMt,i + εi,t+2 (25)

In the data, Aguiar et al. (2020) find that this univariate regression yields a coefficient

β1 that is virtually zero, signifying that there is no difference in the average consumption

growth of current HtM agents and those with higher wealth. As they note, this runs counter

to the standard model’s implication that current HtM agents are on average expected to save

out of the constraint quickly, and thus experience high future consumption growth. Indeed,

consistent with this intuition, we find that in the FI version of the model consumption growth

conditional on current HtM status is 1.5% higher than otherwise.

In contrast, our costly reasoning model matches the data (as we report in Table 2, panel

A) because in our model the heterogeneity in wealth is driven to a large extent by differences

in target wealth levels. Thus, the majority of the agents in our simulation are both close to
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their target wealth levels and intend to stay there, hence on average the HtM and non-HtM

agents in our model have similar consumption growth rates, as they are not experiencing

systematically different average growth rates in assets.

The insight of HtM agents having different target wealth levels leads Aguiar et al.

(2020) to augment the regression in (25). In particular, as they do in the data, we define

the propensity to be HtM as the fraction of time that a given agent i in our simulation finds

himself in a hand-to-mouth situation (FracHtMi) and add this as a regressor to estimate

∆ ln ci,t+2 = β0 + β2HtMt,i + γFracHtMi + εi,t+2 (26)

Aguiar et al. (2020) find that the coefficient on current HtM status is now significantly positive,

β2 = 0.025, while the coefficient on the propensity to be HtM on average is significantly

negative, γ = −0.038. Additional results in that paper, show that these differences are

unlikely to be due to differences in income processes or idiosyncratic risk, and thus conclude

they are likely due to a mechanism where the HtM agents have a low target wealth level,

hence unless they are close to it (as indicated by current HtM status) they have low savings

rates, and thus a low consumption growth.

Indeed, this is exactly what happens in our model. Due to the differential target wealth

levels, which essentially makes HtM status a persistent agent characteristic, our model is able

to match the regression coefficients very well, delivering a β = 0.035 and γ = −0.048. On the

other hand, the full-information model is sharply at odds with this empirical evidence, again

because it lacks this differential target wealth levels mechanism.

The puzzling lack of saving by constrained agents

We just argued that the low savings rate of constrained agents in our model helps explain their

persistently low wealth. The same mechanism rationalizes a related challenging empirical fact,

documented by Ganong and Noel (2019). The major puzzle they pose is why constrained

agents do not save out of income which is known to be available only temporary. Put

differently, at the predictable moment when that income is no longer available these agents’

consumption drops sharply, reflecting an apparent lack of saving and thus consumption

smoothing. While standard models of liquidity constraints can explain why agents cannot

borrow enough to smooth consumption, Ganong and Noel (2019) make a convincing argument

that such models cannot explain the lack of saving in anticipation of a drop in income.

Our mechanism can instead rationalize this observation. The key intuition is that the

majority of agents near the constraint in our model are there persistently, due to a high

estimate of the level of the policy function and a resulting low long-run wealth level. In other
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Moments Data Benchmark Full info

(1) (2) (3)

(A) Constrained agents

Fraction of Hand-to-Mouth (HtM) 0.23 0.23 0.01
β1 univariate regression 0 0.001 0.015
β2 multivariate regression 0.025 0.035 0.015
γ multivariate regression -0.038 -0.048 -0.010
∆c,t+1 -0.12 -0.137 0.001

(B) MPC

Average (aggregate) MPC 0.2-0.6 0.29 0.05
Average MPC | top 20% of assets 0.17 0.15 0.04
Average MPC | non-HtM 0.15 0.04
Average MPC | HtM 0.83 0.08

Table 2: We report moments from data in column (1) and the stationary distribution in our benchmark
costly reasoning model in column (2). In our counterfactuals we keep parameters at their benchmark values
but set σ2

c = 0 in column (3), to construct the full-information counter-part of our model. The data moments
in Panel (A) are documented by Aguiar et al. (2020) and Ganong and Noel (2019), as we discuss in the text.
In Panel (B) the range of credible estimates of the aggregate MPC is from Carroll et al. (2017), and estimate
of the MPC of the rich from McDowall (2020).

words, in our model, such agents not only display a high MPC or elasticity of consumption,

but also a habitual tendency to consume a lot, and thus dis-save, on average. As a result,

these agents do not appear to have the same strong saving incentive as their full-information

counterparts, even in the face of predictable income declines, as we quantify below.

To align with the empirical setting of Ganong and Noel (2019), we design the following

experiment at the stationary equilibrium of our model. First, we look at the subset of agents

relatively close to the constraint, which have an average MPC of 0.6, similar to the observed

drop of spending out of unexpected income shocks for the agents that Ganong and Noel (2019)

analyze.35 Second, we replicate their observation that at the exhaustion of the UI benefits

labor income can be expected to fall by an average of 40%, as a percent of its steady-state. In

our model, with iid shocks, we recover this predictable fall at t+1 by simulating a time t labor

income shock of size +40%w. Given the iid nature of shocks, agents thus expect an average

percentage change in labor income from t to t+ 1 of ∆s,t+1 = −40%. Third, we collect these

agents’ resulting consumption decisions ci,t = ĉi,t(yi,t), the ensuing cash-on-hand evolution

yi,t+1 = (1+ r) (yi,t − ci,t)+wsi,t+1, and consumption actions next period ci,t+1 = ĉi,t+1(yi,t+1).

35This means picking out the agents in the bottom 30% of the wealth distribution, which amounts to
largely focusing on the HtM agents.
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Figure 6: Lack of saving by bounded-rational constrained agents

We then compute the average percentage change in consumption between t and t + 1, as

income falls (predictably) by 40%:

∆c,t+1 =

∫
ci,t+1 − ci,t

ci,t
di.

Finally, we also collect the counter-factual consumption and savings actions implied by the

fully-rational policy c∗i,t = c∗(yi,t), conditional on the same initial cash-on-hand levels. The

t+ 1 optimal consumption choices are thus c∗i,t+1 = c∗(y∗i,t+1), where the t+ 1 cash-on-hand in

that case is y∗i,t+1 = (1 + r)
(
yi,t − c∗i,t

)
+ wsi,t+1, reflecting the counter-factual time-t optimal

consumption choice. We similarly compute the average percent change in c∗i,t+1.

Our key result here is that the boundedly rational agents experience on average a change

in consumption between t and t+ 1 of ∆c,t+1 = −13.7%. This result is very puzzling from

the perspective of the full-information policy function, which would instruct agents to save

most of that temporary income and implement an almost perfect consumption smoothing

between t and t + 1, resulting in ∆∗c,t+1 = 0.09%. In contrast to actions taken under that

full-information, our agents thus save too little out of their temporarily available liquidity

at time t. This means that at t + 1, when the average labor income is predicted to fall

dramatically from time t, many agents are back to being close to the constraint and therefore

having to cut back significantly on consumption. Remarkably, as we report in Table 2, this

large drop in consumption is quite close to the average 12% drop in spending documented by

Ganong and Noel (2019) at the exhaustion of the UI benefit.
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The intuition for the lack of saving of these agents close to the constraint relates back to

our analysis of the empirical moments reported by Aguiar et al. (2020), and is best understood

by contrasting the level and the slope of the effective consumption policy function.

We use Figure 6 to visually illustrate the argument. The blue solid line plots the average

policy function estimate for the sample of boundedly rational agents near the constraint

that we analyze here, and the red line plots the optimal policy c∗. The key difference is that

the typical ĉi,t(y) is significantly higher than c∗, even though the slopes are quite similar

throughout. Thus, given an unexpected shock to income, both the poor boundedly rational

and the poor optimal agents display the same MPC or consumption sensitivity. However, for

any level of liquidity, the boundedly rational agents consume a higher fraction of the available

resources and hence save significantly less on average.

Given the size of injected liquidity, the typical consumption action ct =
∫
ci,tdi of our

constrained agents is the blue filled-in circle, sitting on the typical policy estimate. As we

have seen in Figure 5 and illustrated by the example-agent C in Figure 3, this choice of ct

is significantly above the one implied by cRW policy (by about 25%), implying that these

agents save considerably too little to maintain the same cash-on-hand at t+ 1 as of time t.

In fact, the large over-consumption relative to cRW (yt) implies that the boundedly rational

agents experience a sharp decline in cash-on-hand at time t+ 1, generating a drop between

the typical ct+1 (the blue empty circle) and ct of 14%. In contrast, under the counterfactual

full-information, the typical optimal consumption action c∗t (red filled-in circle) is close to its

annuity value cRW (yt), thus keeping cash-on-hand stable between t and t+ 1 and smoothing

consumption through the predictable drop in income. In other words, while both agents

similarly increase consumption upon the initial unexpected positive income shock in this

exercise (reflecting high MPC), the optimal agent still consumes a relatively small fraction

of his overall financial resources (even though consumption increased sharply), while the

boundedly rational agent follows his habitual tendency to consume too much and dis-save.

Put together, our costly reasoning model, grounded in the psychological and neuro-

science evidence of noisy, resource-rational reasoning based on episodic memory, formalizes

and proposes a novel narrative for why agents do not easily leave the constraint. In this view,

otherwise ex-ante identical agents have noisy cognitive access to the full-information con-

sumption policy c∗ that would optimally imply a high saving decision around the constraint.

For some agents, this noisy perception of that best course of action is to consume more

aggressively than that. In turn, in the ergodic distribution these agents are over-represented

in the left tail of the wealth distribution, and both display a high MPC and habitually high

level of consumption, and thus persistently low wealth.36

36This argument also suggests that extending the model to allow for borrowing (a > 0) would still imply
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High MPCs of unconstrained wealthy agents

A standard approach to deliver our previous key properties, of a mass of agents that have low

wealth perpetually, is to consider preference heterogeneity, and in particular heterogeneity in

time-discount rates (e.g. Aguiar et al. (2020), Carroll et al. (2017)). As further emphasized

by Krueger et al. (2016), such preference heterogeneity is usually seen as crucial for a model’s

ability to generate the resulting large mass of poor agents and, through it, empirically relevant

aggregate MPCs that speak to the propagation of macroeconomic shocks and policy.

However, an issue often left unaddressed in this approach is that in the data the wealthy,

unconstrained households also have surprisingly high MPC. The literature is careful to note

that being “constrained” may be interpreted in terms of the overall net worth, as in the one

asset economy studied here, or more specifically in terms of liquid wealth in a model that

differentiates assets by liquidity, like in Kaplan et al. (2014). Still, a significant body of recent

evidence, like Lewis et al. (2019), Fagereng et al. (2020), Gelman (2020), McDowall (2020),

point out that even for agents with high liquid wealth the MPC level is significantly higher

than implied by standard models. For example, in a model of discount-rate heterogeneity,

the ’saver’ (high β) types accumulate wealth and become the typical rich agents, but their

stronger incentive to smooth consumption also leads, everything else constant, to lower MPCs

when they are in a non-HtM circumstance, i.e. rich and highly liquid.37

In this context, our model is consistent with this puzzling evidence on high MPCs of

rich and (liquidity) unconstrained agents, while at the same time delivering the systematically

different target wealth levels and HtM behavior emphasized by the prior empirical literature.

To showcase this unconstrained behavior, in panel (b) of Figure 5 we plot the typical policy

function of the group of non-HtM agents. Overall, the resulting typical policy is foreshadowed

by the example-agent S from Section 4.2. First, we can see that the typical policy estimate

ĉnon−HtM (x) is mostly below c∗(y), consistent with the endogenous selection of these wealthy

agents as under-estimating the latter. Through this perspective, at their typical ergodic

cash-on-hand, rich agents consume less than implied by c∗(y). Second, we can also see that

the typical ergodic cash-on-hand of these wealthy agents is quite close to their long-run target

wealth level ȳi, as implied by the fact that the typical policy estimate ĉnon−HtM (x) is roughly

centered around the intersection with cRW (y). This is to be expected by the fact that, as we

that a large mass of agents will sit near to that constraint, and thus continue to experience high MPCs. In
contrast, in standard models allowing for borrowing tends to imply that agents move enough away from the
constraint, so that even those with approximately zero assets (i.e. still measured as HtM ), are characterized
by significantly lower MPCs than in a model with a = 0. See Carroll et al. (2017) and Aguiar et al. (2020) as
examples of models that produce such lower MPCs for what otherwise look like HtM agents.

37More generally, recent state-of-the-art models relying on preference heterogeneity, such as Aguiar et al.
(2020), while typically aimed and successful at accounting for HtM behavior, have a difficult time jointly
explaining the high MPC of the (liquidity) unconstrained, rich agents.
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saw from Table 1, two-thirds of the non-HtM agents are in a learning trap.

But as discussed earlier, consumption behavior around the individual steady-state

wealth ȳi is necessarily characterized by a MPC that is significantly higher than the slope

of the cRW (y) function, which is equal to r/(1 + r). This is because ȳi is indeed a stable,

steady-state wealth level if and only if the consumption function is sufficiently steep in the

neighborhood of ȳi, so that, for example, upon a positive income shock the agent consumes a

large fraction of it, thus keeping wealth stable.

The upshot of this qualitative insight is that the average MPC within the group of

non-HtM agents in our model is significantly higher than r/(1 + r) ≈ 0.04, as reported in

panel (B) of Table 2. At our calibration, the average MPC of non-HtM agents is 0.15 which is

almost four times larger than that, and consequently also four times larger than the average

MPC of the full-information model (since the slope of c∗(y) converges to r/(1 + r) for large

y). Precise empirical estimates of the MPCs of wealthy agents are hard to obtain, but recent

studies by McDowall (2020) and Gelman (2020) imply that the MPC of the wealthiest 20%

of agents is around 0.17, very close to what our model implies (without it being targeted).

Aggregate MPC

Overall, our model successfully generates large, empirically relevant aggregate MPC thanks to

both of the forces emphasized earlier – (1) the compositional effect of being able to generate a

large (and persistent) fraction of HtM agents, and (2) the implied high MPC for the wealthy,

unconstrained agents. Both of these channels matter for the average (or aggregate) MPC. In

particular, our model delivers an average MPC of 0.29, which is well in-line with the empirical

estimates – those range from 0.2 to 0.6 according to the review in Carroll et al. (2017). In

contrast, in the FI version of the model the mean MPC is counter-factually low and just 0.05.

Decomposing the difference in the average MPC between our model and the FI bench-

mark (0.29− 0.05 = 0.24) in terms of the contribution of the two channels, we find that the

second, namely the high MPCs of the rich agents, account for 35% of the difference. Hence,

while our model shares the insight of Krueger et al. (2016) that the mass of poor agents is

crucial for generating empirically relevant MPCs, our quantitative analysis shows that the

surprisingly high MPCs of wealthy agents also contributes significantly.

5.3 Policy implications

In conclusion, we stress that in our model the pattern of “mistakes” is endogenous. One

immediate exercise that highlights this endogenous nature is to compare our benchmark

model to one where agents know c∗ but make idiosyncratic “trembling hand” mistakes. We
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discuss this experiment in Appendix C. Its key conclusion is that while such mistakes generate

micro volatility and heterogeneity, they tend to wash out over the long-run and are unable to

generate the systematic differences in behavior obtained by our model in Section 5.2.

More fundamentally, our model also offers a novel mechanism through which observed

behavior may change even if the underlying properties of the economy, otherwise sufficient to

describe behavior under full-rationality, have not. We showcase below this property and its

policy implications by contrasting the effects of a fiscal stimulus payment received (i) while the

economy is at its stationary equilibrium, to a case where (ii) the stimulus is received at a time

where additional information arrives that lowers agents’ confidence in their previous reasoning.

While the arrival of this information does not affect the counterfactual full-rational model’s

response to the stimulus, since there agents are assumed to have no doubt about c∗(y), it

matters in our model.38 In particular, this sudden lack of confidence reduces the effectiveness

of the stimulus policy, as it endogenously prompts agents to reason more intensely than

otherwise, revise beliefs and thus abandon their “business-as-usual”, high MPC behavior.

To illustrate these effects, in panel (a) of Figure 7 we plot the response of aggregate

consumption to a one-time 1% increase in average income – corresponding, for example,

to a lump-sum fiscal stimulus payment to all agents. We plot the response of aggregate

consumption in our benchmark CR economy with the blue line, and the counter-factual

response in the FI economy with a yellow line. As foreshadowed by the high MPCs our model

delivers, there is a significant aggregate response, with aggregate consumption increasing by

0.25% on impact, as compared to just a 0.04% increase in the FI economy.39

Next we consider the effect of the same fiscal stimulus payment when received at a

time when intangible information, for example reflecting the perception of a “new normal”,

leads agents to acknowledge that their previously accumulated reasoning about the optimal

c∗(y) is now obsolete.40 The aggregate response of consumption to the stimulus in this case

is roughly cut in half, as can be seen from the red line in panel (a) of Figure 7.

The fall in the effectiveness of the stimulus is a direct consequence of the endogenous

nature of the behavioral “mistakes” of our agents. As agents choose now to reason more

than otherwise, their current behavior puts more weight on the new reasoning signals, which

are centered at c∗, while the destruction of past information resets the beginning-of-period

beliefs to c∗. Hence, intuitively, the average behavior temporarily changes to resemble more

38Thus, this intangible information experiment isolates the effect of our model of bounded rationality, by
keeping the agents’ preferences, endowment process, and available financial and technological constraints
constant, and thus the underlying full-information c∗(y) as unchanged.

39Since there is no fundamental change to the structure of the economy, after this one-time shock it
converges back to the same stationary distribution.

40The experiment is simple and stark - this shock resets all agents’ beliefs back to the time-0 prior. A case
where only some, but not all, previous reasoning information is rendered useless works qualitatively similar.
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Figure 7: Response of economy following an intangible information shock

(a) Aggregate effect of stimulus
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closely that under c∗, with the differential effects being particularly large for the rich agents,

as unconstrained households have steep policy functions either way.

As we see in panel (b) of Figure 7, both of the two key behavioral properties that we

emphasized in Section 5.2 are now changing. First, there is a lower mass of HtM agents

(blue line), as the renewed reasoning leads some to accumulate more savings. Second, this

new, endogenous reasoning also leads to a significant behavioral change for the rich agents –

for example the MPCs of the wealthiest 20% falls almost four times, to 0.04 (yellow line).

Altogether, there is a sharp reduction in the aggregate MPC, which is essentially halved and

falls to 0.15, as we can see in panel (b) of Figure 7 (red line).

Overall, this illustration highlights that our model may carry important lessons for the

design of policy interventions. Thus, the model also points to caution, defining the classic

Lucas (1976) critique, in not mechanically extrapolating agents’ behavior, here imperfect due

to bounded rationality, as fixed across possibly different environments.

6 Conclusion

This paper is motivated by a long-standing interest in the economics literature of relaxing

the typically convenient, but otherwise extreme, assumption of decision-makers having free

cognitive access to their optimal policy function. In this context, the first contribution of

the paper is methodological in nature, as we propose a framework to model costly reasoning

that is (i) tractable and portable across specific economic models, and (ii) well grounded in

a broad neuroscience, experimental and computational literature. The second contribution
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is applied. We show that the proposed costly reasoning framework is a parsimonious and

novel mechanism that generates rich and intuitive joint dynamics of beliefs and actions in

a standard incomplete markets model. These dynamics can help bring the model closer to

the data, and also hold important lessons for policy makers. In this context, our mechanism

opens up the possibility to develop a concrete framework to test the role of costly reasoning

in driving macroeconomic outcomes and policies. Recent work, such as DAcunto et al. (2019)

who find field evidence for cognitive frictions in how agents map macroeconomic expectations

to their implied optimal actions, is a promising such direction.
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Matějka, F. and A. McKay (2014): “Rational inattention to discrete choices: A new
foundation for the multinomial logit model,” The American Economic Review, 105, 272–298.

McDowall, R. A. (2020): “Consumption behavior across the distribution of liquid assets,”
.

Mosteller, F. and P. Nogee (1951): “An experimental measurement of utility,” Journal
of Political Economy, 59, 371–404.

O’Donoghue, T. and M. Rabin (1999): “Doing it now or later,” American Economic
Review, 89, 103–124.

Olafsson, A. and M. Pagel (2018): “The liquid hand-to-mouth: Evidence from personal
finance management software,” The Review of Financial Studies, 31, 4398–4446.

Parker, J. A. (2017): “Why Don’t Households Smooth Consumption? Evidence from a
$25 Million Experiment,” American Economic Journal: Macroeconomics, 9, 153–83.

Plonsky, O., K. Teodorescu, and I. Erev (2015): “Reliance on small samples, the
wavy recency effect, and similarity-based learning.” Psychological review, 122, 621.

Powell, W. B. (2007): Approximate Dynamic Programming: Solving the curses of dimen-
sionality, vol. 703, John Wiley & Sons.

Rasmussen, C. E. and C. K. Williams (2006): Gaussian processes for machine learning,
vol. 1, MIT press Cambridge.

Ratcliff, R. and G. McKoon (2008): “The diffusion decision model: theory and data
for two-choice decision tasks,” Neural computation, 20, 873–922.

Reis, R. (2006): “Inattentive consumers,” Journal of Monetary Economics, 53, 1761–1800.

Rubinstein, A. (1998): Modeling bounded rationality, MIT press.

Shenhav, A., S. Musslick, F. Lieder, W. Kool, T. L. Griffiths, J. D. Cohen,
and M. M. Botvinick (2017): “Toward a rational and mechanistic account of mental
effort,” Annual review of neuroscience, 40, 99–124.

Simon, H. A. (1955): “A behavioral model of rational choice,” The Quarterly Journal of
Economics, 69, 99–118.

54



——— (1956): “Rational choice and the structure of the environment.” Psychological review,
63, 129.

——— (1976): “From substantive to procedural rationality,” in 25 years of economic theory,
Springer, 65–86.

Sims, C. A. (1998): “Stickiness,” in Carnegie-Rochester Conference Series on Public Policy,
vol. 49, 317–356.

——— (2003): “Implications of rational inattention,” Journal of Monetary Economics, 50,
665–690.

Sloman, S. A. (1996): “The empirical case for two systems of reasoning,” Psychological
bulletin, 119, 3.

Stanovich, K. E. and R. F. West (2000): “Individual differences in reasoning: Implica-
tions for the rationality debate?” Behavioral and brain sciences, 23, 645–665.

Stevens, L. (2020): “Coarse pricing policies,” The Review of Economic Studies, 87, 420–453.

Todd, P. M. and G. Gigerenzer (2003): “Bounding rationality to the world,” Journal
of Economic Psychology, 24, 143–165.

Tulving, E. (1972): “Episodic and semantic memory,” in Organization of memory, ed. by
E. Tulving and W. Donaldson, New York: Academic, 381–403.

——— (2002): “Episodic memory: From mind to brain,” Annual review of psychology, 53,
1–25.

Tversky, A. (1969): “Intransitivity of preferences,” Psychological review, 76, 31.

Wei, X.-X. and A. A. Stocker (2015): “A Bayesian observer model constrained by
efficient coding can explain ’anti-Bayesian’ percepts,” Nature neuroscience, 18, 1509.

Wiederholt, M. (2010): “Rational Inattention,” in The New Palgrave Dictionary of
Economics, ed. by S. N. Durlauf and L. E. Blume, Palgrave Macmillan, vol. 4.

Woodford, M. (2003): “Imperfect Common Knowledge and the Effects of Monetary
Policy,” Knowledge, Information, and Expectations in Modern Macroeconomics: In Honor
of Edmund S. Phelps, 25.

——— (2014): “Stochastic choice: An optimizing neuroeconomic model,” The American
Economic Review, 104, 495–500.

——— (2019): “Modeling Imprecision in Perception, Valuation, and Choice,” Annual Review
of Economics, 12.

Zeldes, S. P. (1989): “Consumption and liquidity constraints: an empirical investigation,”
Journal of Political Economy, 97, 305–346.

55



Appendix

A Proofs

Lemma 1. If θk
iid∼ N(µk, σ

2
c ), equation (1) implies that c∗ ∼ GP(ĉ0, σ̂0), with

ĉ0(y) =
N∑
k=1

µkφk(y); σ̂0(y, y
′) = σ2

c

N∑
k=1

φk(y)φk(y
′)

Proof. Given that θk
iid∼ N(µk, σ

2
c ), it immediately follows that for any pair of real scalars,

y, y′ ∈ R, the vector
[∑N

k=1 θkφk(y),
∑N

k=1 θkφk(y
′)
]′

has the following joint Gaussian distri-

bution:

[ ∑N
k=1 θkφk(y)∑N
k=1 θkφk(y

′)

]
∼ N

([ ∑N
k=1 µkφk(y)∑N
k=1 µkφk(y)

]
,

[
σ2
c

∑N
k=1(φk(y))2 σ2

c

∑N
k=1 φk(y)φk(y

′)

σ2
c

∑N
k=1 φk(y)φk(y

′) σ2
c

∑N
k=1(φk(y

′))2

])
,

Assuming a complete set of basis functions {φk}Nk=1 that is big enough to achieve an
arbitrarily good approximation of c∗ so that

c∗(y) ≈
N∑
k=1

θkφk(y) ∼ GP(ĉ0, σ̂0)

where

ĉ0(y) =
N∑
k=1

µkφk(y)

σ̂0(y, y
′) = σ2

c

N∑
k=1

φk(y)φk(y
′)

Lemma 2. Given the time-0 prior belief c∗ ∼ GP(ĉ0, σ̂0), conditional beliefs are given by
c∗
∣∣{ηt, yt} ∼ GP(ĉt, σ̂t) with moments evolving according to the recursive expressions

ĉt(y) = ĉt−1(y) +
σ̂t−1(y, yt)

σ̂2
t−1(yt) + σ2

η,t

(ηt − ĉt−1(yt)), (27)

σ̂t(y, y
′) = σ̂t−1(y, y

′)− σ̂t−1(y, yt)σ̂t−1(y
′, yt)

σ̂2
t−1(yt) + σ2

η,t

(28)

where ĉt(y) ≡ Et(c
∗(y)|ηt) and σ̂t(y, y

′) ≡ Cov(c∗(y), c∗(y′)|ηt) are the posterior mean and
covariance functions. Lastly, σ̂2

t (y) ≡ σ̂t(y, y) denotes the posterior variance at a given y.
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Proof. We prove this by way of induction. Consider the first update of beliefs at t = 1. By
the definition of the Gaussian Process distribution, and the fact that η1 = c∗(y1) + ε1 where
ε1 is Gaussian scalar and independent of the Gaussian Process c∗, it follows that for any
y, y′ ∈ R  c∗(y)

c∗(y′)
η1

 ∼ N

 ĉ0(y)
ĉ0(y

′)
ĉ0(y1)

 ,
 σ̂2

0(y) σ̂0(y, y
′) σ̂0(y, y1)

σ̂0(y
′, y) σ̂2

0(y′) σ̂0(y
′, y1)

σ̂0(y1, y) σ̂0(y1, y
′) σ̂2

0(y1) + σ2
η,1

 ,

where we have used the short-hand notation σ2
0(y) ≡ σ0(y, y).

By the standard property of multivariate Gaussian distributions (and given that y1 is a

known, deterministic scalar), the conditional distribution

[
c∗(y)
c∗(y′)

] ∣∣∣∣η1 is also Gaussian:[
c∗(y)
c∗(y′)

] ∣∣∣∣η1 ∼ N

([
ĉ1(y)
ĉ1(y

′)

]
,

[
σ̂2
1(y) σ̂1(y, y

′)
σ̂1(y

′, y) σ̂2
1(y′)

])
,

where by standard Bayesian updating formulas[
ĉ1(y)
ĉ1(y

′)

]
=

[
ĉ0(y)
ĉ0(y

′)

]
+

[
σ̂0(y, y1)
σ̂0(y

′, y1)

]
η1 − ĉ0(y1)
σ̂2
0(y1) + σ2

η,1

[
σ̂2
1(y) σ̂1(y, y

′)
σ̂1(y

′, y) σ̂2
1(y′)

]
=

[
σ̂2
0(y) σ̂0(y, y

′)
σ̂0(y

′, y) σ̂2
0(y′)

]
−
[
σ̂0(y, y1)
σ̂0(y

′, y1)

]
1

σ̂2
0(y1) + σ2

η,1

[
σ̂0(y, y1)
σ̂0(y

′, y1)

]′
which is simply equations (27) and (28) in matrix form, evaluated at t = 1. Thus, c∗|η1 ∼
GP(ĉ1, σ̂1), where the functions ĉ1 and σ̂1 are defined above. This confirms the result for
t = 1.

For the induction step, assume that equations (27) and (28) hold for t − 1 and that
c∗|ηt−1 ∼ GP(ĉt−1, σ̂t−1). Now consider the update at time t, again it follows that for any
y, y′ ∈ R, the joint distribution [c∗(y), c∗(y′), ηt]|ηt−1 is Gaussian, with means given by the
ĉt−1 function and a variance-covariance matrix fully characterized by the σ̂t−1 function. Then,
by steps similar to those above[

c∗(y)
c∗(y′)

] ∣∣∣∣ηt ∼ N

([
ĉt(y)
ĉt(y

′)

]
,

[
σ̂2
t (y) σ̂t(y, y

′)
σ̂t(y

′, y) σ̂2
t (y
′)

])
,

where by the same standard Bayesian updating formulas for any y, y′ ∈ R[
ĉt(y)
ĉt(y

′)

]
=

[
ĉt−1(y)
ĉt−1(y

′)

]
+

[
σ̂t−1(y, yt)
σ̂t−1(y

′, yt)

]
ηt − ĉt−1(yt)
σ̂2
t−1(yt) + σ2

η,t

[
σ̂2
t (y) σ̂t(y, y

′)
σ̂t(y

′, y) σ̂2
t (y
′)

]
=

[
σ̂2
t−1(y) σ̂t−1(y, y

′)
σ̂t−1(y

′, y) σ̂2
t−1(y

′)

]
−
[
σ̂t−1(y, yt)
σ̂t−1(y

′, yt)

]
1

σ̂2
t−1(yt) + σ2

η,t

[
σ̂t−1(y, yt)
σ̂t−1(y

′, yt)

]′

2



Lemma 3. Let αt(y) ≡ σ̂t−1(y,yt)

σ̂2
t−1(yt)+σ

2
η,t

be the weight put on ηt in the time-t estimate ĉt(y).

• If ψ = 0, then αt(y) is just a constant – i.e. αt(y) = αt for all y ∈ R, and thus

ĉt(y) = ĉ0(y) +
t∑

k=1

αk

t∏
j=k+1

(1− αj)uk

where uk = ηk − ĉ0(yk) is the deviation of signal ηk from the time-0 prior mean belief.

• If ψ > 0, then the informativeness of the signal ηt is state-dependent – ∂αt(y)
∂y
6= 0 – and

hence the shape of the time-t estimate ĉt differs from the time-0 prior, i.e.:

∂ (ĉt(y)− ĉ0(y))

∂y
6= 0

The effect of the information in ηt is also local to yt, since lim||y−yt||→∞ αt(y) = 0

Proof. Consider the updated conditional estimate ĉt(y), where by Lemma 2 for any y ∈ R:

ĉt(y) = ĉt−1(y) + αt(y)(ηt − ĉt−1(yt))

Iterating backwards, it follows that

ĉt(y) = ĉ0(y) +
t∑

k=1

αk(y)
t∏

j=k+1

(1− αj(y))uk (29)

where uk = ηk − ĉ0(yk) is the deviation of signal ηk from the prior mean belief.
To prove the two parts of the Lemma, we will proceed by induction. First, if ψ = 0, for

t = 1 we have

α1(y) =
σ̂0(y, y1)

σ̂2
0(y1) + σ2

η,1

=
σ2
c

σ2
c + σ2

η,1

for all y

In this case, α1(y) = α1 is just a constant. Moreover, the updated covariance function is

σ̂1(y, y
′) = σ̂0(y, y

′)− α1σ̂0(y, y
′) = σ̂2

1 = σ2
c (1− α1)

which is again a constant independent of y and y′. Now consider the induction step; assuming
that

αk(y) = αk for all y and k < t,

σ̂t−1(y, y
′) = σ̂2

t−1 ≡ σ2
c

t−1∏
k=1

(1− αk),

it follows that the effective signal-to-noise ratio for the time t signal is again a constant
invariant to y:

αt(y) = αt ≡
σ̂t−1(y, yt)

σ̂2
t−1(yt) + σ2

η,t

=
σ̂2
t−1

σ̂2
t−1 + σ2

η,t

3



Similarly, the resulting posterior variance at t is also invariant to y:

σ̂t(y, y
′) = σ̂t−1 − αtσ̂t−1 = σ̂2

t = σ̂2
t−1(1− αt)

Hence, αt+1(y) is also a constant invariant to y and so on. Thus, for any time t the
effective signal-to-noise ratio is invariant to y, hence the conditional estimate is simply a
constant shift away from the time-0 prior, with the value of that shift given by a weighted
average of signal surprises:

ĉt(y) = ĉ0(y) +
t∑

k=1

αk

t∏
j=k+1

(1− αj)uk

To prove the second part, when ψ > 0, we need to show that ∂αt(y)
∂y

6= 0 almost

everywhere and that lim||y−y′||→∞ αt(y) = 0. We will do both by induction, and the key is
the evolution of the conditional covariance σ̂t−1(y, y

′). Starting with the case of t = 1, for
any pair y, y′ ∈ R

σ̂0(y, y
′) = σ2

c exp(−ψ(y − y′)2)

which is decreasing in the distance ||y − y′||, and ∂σ̂0(y,y′)
∂y

6= 0 except for y = y′. The updated
covariance function is

σ̂1(y, y
′) = σ2

c exp(−ψ(y − y′)2)− σ4
c exp(−ψ ((y − y1)2 + (y′ − y1)2))

σ2
c + σ2

η,1

hence similarly ∂σ̂1(y,y′)
∂y

6= 0 outside of a measure 0 set and lim||y−y′||→∞ σ̂1(y, y
′) = 0.

On the other hand, given that

α1(y) =
σ2
c exp(−ψ(y − y1)2)

σ2
c + σ2

η,1

we clearly have ∂α1(y)
∂y
6= 0 except for when y = y1, which is measure 0. Also, lim||y−y1||→∞ α1(y) =

0.
For the induction step, assume that ∂σ̂t−1(y,y′)

∂y
6= 0 except for possibly on a set of measure

0, and that lim||y−y′||→∞ σ̂t−1(y, y
′) = 0. The updated covariance function is

σ̂t(y, y
′) = σ̂t−1(y, y

′)− σ̂t−1(y, yt)σ̂t−1(y
′, yt)

σ̂2
t−1(yt) + σ2

η,1

thus, ∂σ̂t(y,y′)
∂y

6= 0 except for possibly on a set of measure 0, and lim||y−y′||→∞ σ̂t(y, y
′) = 0.

Thus, for any arbitrary t, since αt(y) = σt−1(y,yt)

σ2
t−1(yt)+σ

2
η,t

,

∂αt(y)

∂y
6= 0

lim
||y−yt||→∞

α̂t(y) = 0

4



Lastly, by equation (29),

ĉt(y)− ĉ0(y) =
t∑

k=1

αk(y)
t∏

j=k+1

(1− αj(y))uk

and since ∂αt(y)
∂y
6= 0, it follows that

∂ (ĉt(y)− ĉ0(y))

∂y
6= 0

Proposition 1. The optimal signal noise variance is given by

σ∗2η,t =

{
κσ̂2
t−1(yt)

σ̂2
t−1(yt)−κ

, if σ̂2
t−1(yt) ≥ κ

∞ , if σ̂2
t−1(yt) < κ

and this in turn implies the time-t action

ct = ĉt(yt) = ĉt−1(yt) + α∗t (yt)(c
∗(yt) + εt − ĉt−1(yt)),

where the optimal weight put on the new reasoning signal, α∗t (yt) depends on the current state
yt and the history {yt−1, σt−1η } of past signals’ location and precision:

α∗t (yt) ≡
σ̂2
t−1(yt)

σ̂2
t−1(yt) + σ∗2η,t

= max

[
1− κ

σ̂2
t−1(yt)

, 0

]
.

Proof. The agent’s reasoning decision is governed by

min
σ̂2
t (yt)

σ̂2
t (yt) + κ ln

(
σ̂2
t−1(yt)

σ̂2
t (yt)

)
. (30)

s.t.
σ̂2
t (yt) ≤ σ̂2

t−1(yt),

The first-order condition implies that the optimal posterior variance choice is

σ̂2
t (yt) = min

[
κ, σ̂2

t−1(yt)
]

(31)

By Lemma 2,

σ̂2
t (yt) =

σ̂2
t−1(yt)σ

2
η,t

σ̂2
t−1(yt) + σ2

η,t

Using this expression and equation (31), we obtain the expression for the optimal
reasoning noise variance σ2

η,t.
Similarly, using the solution for σ2

η,t, Lemma 2 and the fact that ηt = c∗(yt) + εt, it
follows directly that

5



ct = ĉt(yt) = ĉt−1(yt) + max

[
1− κ

σ̂2
t−1(yt)

, 0

]
(c∗(yt) + εt − ĉt−1(yt)),

Proposition 2. The optimal reasoning intensity and the weight of the new signal in updating
beliefs are both increasing in distance from location of the previous reasoning signal:

∂σ2
η,i,2

∂||yi,2 − y1||
< 0 and

∂αi,2(yi,2)

∂||yi,2 − y1||
> 0.

Therefore, agent C reasons more than agent S, i.e. αC,2(yC,2) > αS,2(yS,2), if and only if

s2 < 1 +
(1 + r)

w
(c∗(y1)− cRW (y1)) ≡ s̄

Proof. Consider the time-1 posterior variance function (expressed as a function of the distance
||y − y1||):

σ̂2
1(y) = σ2

c (1−
σ2
c

σ2
c + σ2

η,1

exp
(
−2ψ||y − y1||2

)
Note that this function is the same for both agents i ∈ {S,C}. Moreover,

∂σ̂2
1(y)

∂||y − y1||
=

σ4
c

σ2
c + σ2

η,1

exp
(
−2ψ||y − y1||2

)
4ψ||y − y1||2 > 0

except for the knife-edge case ||y− y1|| = 0 when this derivative is zero. Using the expression
for the optimal signal-noise variance σ2

η,2 from Proposition 1:

σ2
η,i,2 =

κσ̂2
1(yi,2)

σ̂2
1(yi,2)− κ

outside of the measure-zero case yi,2 = y1. Then, it follows directly that

∂σ2
η,i,2

∂||yi,2 − y1||
=

κ

σ̂2
1(yi,2)− κ

∂σ̂2
1(yi,2)

∂||y − y1||

(
1− σ̂2

1(yi,2)

σ̂2
1(yi,2)− κ

)
︸ ︷︷ ︸

<0

< 0

Similarly, outside of the measure-zero case yi,2 = y1:

αi,2(yi,2) = 1− κ

σ̂2
t−1(yi,2)

and thus

∂αi,2(yi,2)

∂||y − y1||
=

κ

(σ̂2
t−1(yt))

2

∂σ̂2
1(y)

∂||y − y1||
> 0

For the last part of the proposition, note that

6



αC,2(yC,2)− αS,2(yS,2) =
κ(σ2

c − κ) [exp(−2ψ(yC,2 − y1)2)− exp(−2ψ(yS,2 − y1)2)))]
(σ2

c − (σ2
c − κ) exp(−2ψ(y1 − yC,2)2))(σ2

c − (σ2
c − κ) exp(−2ψ(y1 − yS,2)2))

Hence, αC,2(yC,2) > αS,2(yS,2) if and only if

exp(−2ψ(yC,2 − y1)2) > exp(−2ψ(yS,2 − y21))

⇐⇒

(yC,2 − y1)2 < (yS,2 − y1)2

substituting in the law of motion for cash-on-hand:

yi,2 = (1 + r)(y1 − ĉi,1(y1)) + ws2 = (1 + r)(y1 − c∗(y1)− α1εi,1) + ws2

it follows that αC,2(yC,2) > αS,2(yS,2) if and only if

s2 <
(1 + r)c∗(y1)− ry1

w
+

(1 + r)α1

2w

ε2C,1 − ε2S,1
εC,1 + |εS,1|

and using the definition of cRW (y) and our assumption that εC,1 = −εS,1, it follows that
αC,2(yC,2) > αS,2(yS,2) if and only if

s2 < 1 +
(1 + r)

w
(c∗(y1)− cRW (y1))

B Calibration Strategy

To calibrate the learning-related parameters {σ2
c , ψ, κ} (given values for the rest of the

parameters, which are discussed in Section ??) we look for a fixed point, such that (i) an
econometrician trying to estimate the distribution of the reasoning signals ηi,t would indeed
recover the actual values of {σ2

c , ψ} used for the simulation and (ii) the model implies zero
net-assets for the bottom 20% of the wealth distribution (matching the PSID data).

We are motivated to look for a fixed point in {σ2
c , ψ} in order to ensure that agents have

model consistent priors, in the sense that the prior beliefs properly capture the features of the
true c∗(y) policy function. Intuitively, we would like to parameterize the prior in an “efficient”
way so that it does not imply any ex-ante biases that impede the estimation process.

To do so, we consider the problem of an agnostic econometrician who attempts to
estimate the function c∗(y) out of a data set that constitutes the reasoning signals ηi,t
from the simulation of our model. The econometrician uses the same Bayesian methods as
the agents in our model, and has a Gaussian Process prior over the unknown function c∗.
The econometrician is “agnostic”, however, in the sense that instead of treating the prior
distribution of c∗ as a primitive, he treats the prior as a “hyper-parameter” that is optimized
over during the estimation procedure. In this way, the econometrician looks for the “optimal”

7



or most efficient prior for the data at hand (which is the simulated reasoning signals from
the ergodic distribution of the model).

In our calibration strategy, we want to ensure that the agents in our model indeed
hold those same “optimal” priors. To do so, we look for a fixed point between the assumed
parameterization of the agents’ priors, i.e. {σ2

c , ψ}, and the values for the prior hyper-
parameters the agnostic econometrician recovers. – which we label {σ̃∗,2c , ψ̃∗}.

In particular, this econometrician

1. is given the history of reasoning signals ηti for all agents in the simulated economy as a
data set which we denote η

2. is aware of the structure of the signals, i.e. that

ηi,t = c∗(yi,t) + εi,t , εi,t ∼ N(0, σ2
η,i,t).

3. Observes yi,t and σ2
η,i,t, which we collect in the observed vector y, but is uncertain about

the function c∗(y) and holds the following Gaussian Process prior over it:

c∗ ∼ GP(0, σ̃0)

As is standard practice in Bayesian statistics, the econometrician assumes that the
prior mean is the constant zero function – in this sense, he is “agnostic” about the
particular functional form of c∗. The econometrician’s prior is also parameterized by a
squared exponential function, just as the agents in our model:

σ̃0(y, y
′) = σ̃2

c exp(−ψ̃(y − y′2)

To differentiate with the agents’ covariance function, we label the parameters of the
econometrician’s covariance function with tildes.

4. Given the collection of reasoning signals η the econometrician forms the posterior
distribution c∗|η, and finds the optimal hyper-parameters {σ̃∗,2c , ψ̃∗} by maximizing the
resulting marginal likelihood of the data (as a function of {σ̃2

c , ψ̃}):

max
σ̃2
c ,ψ̃

p(η|y, σ̃2
c , ψ̃) = −1

2
y′K1

ηy −
1

2
ln(Kη)−

n

2
ln(2π)

where Kη is the covariance matrix of the econometrician’s data vector η, with (i, j)
element

Kη(i, j) = σ̃2
c exp

(
−ψ̃(y(i)− y(j))2

)
+ 1(i = j)σ2

η(i)

Note: since c∗ has a Gaussian Process distribution with a squared exponential covariance
function, the covariance between two data points η(i) and η(j) depends on the position
of the y state values at which the two respective η signals are observed. The diagonal
entries of Kη are also affected by the variance of the idiosyncratic reasoning noise σ2

η,i,t,
which the econometrician observes and takes into account.

8



5. This results in maximized values of the prior hyper-parameters σ̃2
c , ψ̃:

{σ̃∗,2c , ψ̃∗} = arg max
σ̃2
c ,ψ̃

p(η|y, σ̃2
c , ψ̃)

Thus, for any given simulation of our model we can obtain the agnostic econometrician’s
inferred values of σ2

c and ψ by following steps 1-5 above. In addition, we can then vary the
parameter κ, which controls the extent or magnitude of the reasoning friction, in order to hit
the additional target of zero net-wealth for the poorest 20% of agents at the ergodic steady
state of the model.

We use the following numerical strategy to find the necessary fixed-point in {σ2
c , ψ, κ}:

(a) Given an initial guess for {σ2
c , ψ, κ} (taking rest of the parameters as given), we simulate

the model using the benchmark simulation size of T = 10, 000, N = 5, 000.

(b) We discard the first half of the simulated time-series and are left with a 5000x5000 panel
data set η.

(c) This is a very large dataset, so to speed up the hyper-parameter estimation outlined
above (and thus make our fixed point search feasible), we select a random samples of
length 1

θ
(i.e. an average life-cycle of information) out of the full dataset η and perform

steps 1-5 above on each of those samples.

We repeat, with replacement, 500 times and then take the average of the resulting 500
pairs of estimated hyper-parameters which we call {σ̄∗,2c , ψ̄∗}.

(d) We check whether we have achieved a fixed point defined as satisfying both

(i) ||{σ2
c , ψ} − {σ̄∗,2c , ψ̄∗}|| < 1e− 5

(ii) Share of total assets of bottom 20% of agents < 1e− 5

(e) if the two conditions above are satisfied we stop and use those coefficients {σ2
c , ψ, κ}. If

not, we update the guess of the parameter values as needed and go back to step (a).

C Costly reasoning vs simple mistakes

We discuss here a counter-factual model where agents have full-information about the optimal
policy function but make idiosyncratic mistakes in their actions. Namely, we consider that
agents are suffering from a simple “trembling-hand” kind of control problem, where they set
an approximately accurate action that is contaminated with i.i.d. noise:

ctrmbi,t = c∗(yi,t) + σ2
τεi,t. (32)

When simulating this model, we use the exact same sequence of noise shocks εi,t that
affect the reasoning signals in the costly-reasoning model. Hence, the stochastic choice of
agents in this alternative model is driven by the same source of exogenous disturbances that
generates contemporaneous dispersion in our benchmark model. We calibrate the standard
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deviation of these shocks, στ = 0.18, so as to match the dispersion of actions around the
full-information action in the benchmark CR model – i.e. to match V ar(ci,t − c∗(yi,t)).

Moments Data Benchmark Full info Trembles

(1) (2) (3) (4)

(A) Hand-to-Mouth (HtM)

Fraction of Hand-to-Mouth 0.23 0.23 0.01 0.02
β1 univariate regression 0 0.001 0.015 0.028
β2 multivariate regression 0.025 0.035 0.015 0.030
γ multivariate regression -0.038 -0.048 -0.015 -0.030

(B) MPC

Average (aggregate) MPC 0.2-0.6 0.29 0.05 0.06
Average MPC | top 20% of assets 0.17 0.15 0.04 0.04
Average MPC | non-HtM 0.15 0.04 0.04
Average MPC | HtM 0.83 0.08 0.04

Table C.1: We report moments from data in column (1) and the stationary distribution in our benchmark
costly reasoning model in column (2). In our counterfactuals we keep parameters at their benchmark values
but set σ2

c = 0 in column (3), to construct the full-information counter-part of our model. The data moments
in Panel (A) are documented by Aguiar et al. (2020) by utilizing the PSID panel structure. In Panel (B) the
range of credible estimates of the aggregate MPC is from Carroll et al. (2017), and estimate of the MPC of
the rich from McDowall (2020).

In this counterfactual “trembles” model, with moments reported in column (4) of Table
C.1, agents similarly display stochastic choice and make mistakes in their actions, as in the
CR model. This creates some additional wealth heterogeneity compared to the FI model, but
that is quantitatively negligible – the share of assets held by the top 20% of agents increases
from 44% to 46%, and the fraction of HtM agents increases from 1% to 2%. Overall, the
Gini coefficient remains the same at 0.39.

Similarly, while the “trembles” generate consumption volatility, on average an agent
behaves as under c∗, hence the MPCs for the unconstrained agents are also low. There
is a slight increase in the average MPC (0.06 vs 0.05), but that is completely due to the
compositional effect of more HtM agents – the MPC of the unconstrained agents are equivalent
in the “trembles” and the full-information models. This showcases that the endogeneity in
the reasoning intensity choice and the implied selection effect we have discussed in Section
4.2 are crucial for obtaining the systematically higher MPCs in our benchmark model.

The key to these results is that the errors in this counter-factual are not systematic, hence
they tend to wash out over the long-run. For example, an agent might under-consume a few
times, but he is not likely to become a “saver” type that persistently under-consumes, like it is
possible in the CR model due to the endogenous, state-dependent choice of reasoning intensity.
This is exemplified by the expected consumption growth of HtM agents in the “trembles”
version of the model, which is even higher than under FI (2.8% vs 1.5%), underscoring the
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strong mean-reversion in actions in this counter-factual model.
The fact that the ergodic implications of this “trembles” counter-factual are similar

to the full-information model illustrates a standard justification in the literature that the
latter model may still be a good approximation for an underlying model where agents do
end up making errors. In contrast, our mechanism shows that when behavioral “mistakes”
are modeled in a “resource rational” way, the joint-distribution of beliefs and actions differ
qualitatively and quantitatively from its full-information version.
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