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Abstract

We consider semi-structural time series models subject to ‘narrative restrictions’, which

are inequality restrictions on functions of the structural shocks in specific time periods

(as in Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and Ludvigson, Ma and Ng (2018)).

These restrictions do not fit into the existing framework for studying set-identification

and there is no known frequentist procedure for conducting inference in these models.

We provide a formal framework for estimation and inference under narrative restric-

tions by: 1) formalizing the identification problem under narrative restrictions; 2)

showing some undesirable properties of the Bayesian approach in Antoĺın-Dı́az and

Rubio-Ramı́rez (2018); 3) proposing an alternative robust Bayesian approach to esti-

mation and inference that overcomes these problems; and 4) showing that our approach

has frequentist validity in large samples. We illustrate the method by analyzing the

effects of monetary policy in the United States using a novel restriction on the relative

magnitudes of the same structural shock in different time periods.
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1 Introduction

Antoĺın-Dı́az and Rubio-Ramı́rez (2018) (AR18) propose a new class of ‘narrative sign re-

strictions’ in structural vector autoregressions (SVARs), which are inequality restrictions

that involve the structural shocks hitting the economy in particular time periods. Ludvig-

son, Ma and Ng (2018) and Ludvigson, Ma and Ng (forthcoming) also consider restrictions

on the sign or magnitude of structural shocks in particular periods. These restrictions are

potentially useful for empirical researchers, as demonstrated by a burgeoning empirical lit-

erature that adopts the approach in AR18, including Furlanetto and Robstad (2019), Kilian

and Zhou (2019, 2020), Cheng and Yang (2020), Inoue and Kilian (2020), Laumer (2020),

Redl (2020), Zhou (2020) and Antoĺın-Dı́az, Petrella and Rubio-Ramı́rez (In Press). The

nature of the restrictions raises a nonstandard estimation problem and novel econometric

questions. This paper clarifies the nature of the problem and offers a solution that is valid

from both Bayesian and frequentist perspectives.

Henceforth, we simply call ‘narrative restrictions’ (NR) any restrictions that can be writ-

ten as an inequality involving structural shocks in particular periods. An example of NR are

‘shock-sign restrictions’, such as the restriction in AR18 that the US economy was hit by a

positive monetary policy shock in October 1979. This is when the Federal Reserve markedly

increased the federal funds rate following Paul Volcker becoming chairman, and is widely

considered an example of a positive monetary policy shock (e.g., Romer and Romer 1989).

AR18 also consider the ‘historical decomposition restriction’ that the change in the federal

funds rate in October 1979 was overwhelmingly due to a monetary policy shock. This is an

inequality restriction that simultaneously constrains the historical decomposition of the fed-

eral funds rate with respect to all structural shocks. We further consider novel ‘shock-rank’

NR and assume that the monetary policy shock in October 1979 was the largest positive

realisation of the monetary policy shock in the sample period.

From the perspective of identification analysis, NR are fundamentally different from

traditional restrictions such as the sign restrictions on impulse responses proposed in Uhlig

(2005). Under the Gaussian specification for the structural shock distribution, traditional

sign restrictions induce set-identification since they generate a set-valued mapping from the

SVAR’s reduced-form parameters to its structural parameters. NR also generate a set-valued

mapping from the reduced-form parameters to the structural parameters, but the mapping
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depends on the realisation of the data independently of the reduced-form parameters.1 This

novel feature of NR has important implications for identification and inference. In particular,

one cannot directly apply the existing framework for analyzing identification and performing

frequentist inference in set-identified models. This means that there is no known frequentist

inference procedure for models subject to NR.

From the perspective of Bayesian analysis, there is little apparent difference in the al-

gorithms that impose traditional or narrative restrictions, as demonstrated by the Bayesian

approach proposed by AR18. However, we illustrate two features of the approach of AR18

that can spuriously affect inference. First, the conditional likelihood considered by AR18

implies that for some types of NR the prior is updated only in the direction that makes the

NR unlikely to hold a-priori. Second, standard Bayesian inference under NR is sensitive to

the choice of prior.

In this paper, we propose a formal framework for studying identification and for conduct-

ing estimation and inference under NR that is potentially appealing to both Bayesians and

frequentists. We proceed in three steps. We first formalize the identification problem under

NR. We then propose a robust Bayesian approach for estimation and inference in SVAR

models subject to NR that overcomes the potential pitfalls of the approach considered by

AR18. Finally, we show that our approach has frequentist validity in large samples.

The use in AR18 of a conditional likelihood can potentially cause problems when the

conditioning event (the NR holding) is not ancillary – that is, its probability of occurring

depends on the model’s parameters. While the shock-sign restriction considered by AR18

is ancillary, the historical decomposition restriction is not. In SVARs this means that the

numerator of the conditional likelihood is flat with respect to the orthonormal matrix that

maps reduced-form VAR innovations into structural shocks, whereas the denominator can

depend on this matrix. Given the reduced-form parameters, the conditional likelihood in

these cases is therefore maximised at the value of the orthonormal matrix that minimises

the probability that the NR are satisfied. Consequently, the posterior places more weight on

values of the orthonormal matrix that yield a lower probability of the NR being satisfied.

This lower posterior probability does not reflect any prior information about the plausibility

of the NR. It also does not reflect any new information in the data, since the probability

that the NR are satisfied does not depend on the data. Accordingly, we advocate using

the unconditional likelihood – the joint probability of observing the data and the NR being

1Applications using SVARs with NR typically assume Gaussian structural shocks to facilitate Bayesian
inference. Notable exceptions are Ludvigson, Ma and Ng (2018) and Ludvigson, Ma and Ng (forthcoming),
who conduct inference using a bootstrap (although the frequentist validity of this bootstrap is unknown). In
a single-equation setting, Petterson, Seim and Shapiro (2020) consider a likelihood-free framework to derive
bounds for a slope parameter given restrictions on the magnitude of the errors.
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satisfied – when constructing the posterior. Using the unconditional likelihood rather than

the conditional likelihood is also computationally less demanding.

A standard Bayesian approach to inference remains problematic even when considering

the unconditional likelihood. To see why, note that NR truncate the unconditional likelihood

so that it is flat, with the points of truncation depending on the realisations of the data that

enter the NR.2 This implies that the posterior distribution of the orthonormal matrix will be

proportional to the prior distribution whenever the likelihood is nonzero. Posterior inference

may therefore be sensitive to the choice of prior for the orthonormal matrix. This is a

problem that also occurs in set-identified models under standard restrictions (e.g. Poirier

1998). Moreover, this issue is not necessarily alleviated by imposing a prior that is uniform

over the orthonormal matrix, since a prior that is noninformative for some parameters may

be informative for functions of these parameters, such as the impulse responses (see, for

example, Baumeister and Hamilton (2015)).

To address these issues, we adapt the robust Bayesian approach of Giacomini and Kita-

gawa (2018) (GK18) to models with NR. In the context of an SVAR under standard re-

strictions, this approach involves decomposing the prior for the structural parameters into a

revisable prior for the reduced-form parameters and an unrevisable prior for the orthonormal

matrix. Considering the class of all priors for the orthonormal matrix that are consistent

with the identifying restrictions generates a class of posteriors, which can be summarised

by a set of posterior means (an estimator of the identified set) and a robust credible region.

This removes the source of posterior sensitivity.3 We show that the approach also applies

under NR, with modifications to account for the novel features of the restrictions. In par-

ticular, one cannot write down a conditional prior for the orthonormal matrix to represent

the NR, because the mapping between the reduced-form parameters and the structural pa-

rameters induced by the restrictions depends on the realisation of the data independently

of the reduced-form parameters, and a prior cannot depend on the realisation of the data.

However, by considering the class of all priors consistent with any standard identifying re-

strictions (if present), one can trace out all possible posteriors that are consistent with the

standard restrictions and the NR (given a prior on the reduced-form parameters). This is

because standard restrictions truncate the support of the conditional prior, while NR trun-

cate the support of the likelihood, so the posterior given any particular conditional prior

is only supported on the common support of the conditional prior and the likelihood. We

describe algorithms to implement this approach.

2This is also true for the conditional likelihood when the NR are ancillary.
3Giacomini, Kitagawa and Read (2019) extend this approach to SVARs where the parameters of interest

are set-identified using so-called ‘external instruments’ (also known as ‘proxy SVARs’).
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We also explore the frequentist properties of our robust Bayesian procedure under NR.

First, we introduce the notion of a ‘conditional identified set’ that extends the standard

notion of an identified set to a setting where identification is defined in a repeated sampling

experiment conditional on the set of observations entering the NR. Under the assumption

that there is a fixed number of NR, we provide conditions under which our robust Bayesian

approach provides asymptotically valid frequentist inference about the conditional identified

set for the impulse response and for the impulse response itself.

We illustrate our methods by estimating the effect of monetary policy shocks in the

United States. We find that inferences about the effect of monetary policy shocks on output

obtained under the NR considered in AR18 may be sensitive to the choice of conditional

prior for the orthonormal matrix. We also apply a novel ‘shock-rank’ restriction, which

constrains the structural shocks to be consistent with views about the magnitude of a par-

ticular shock hitting the economy in a particular period relative to the same shock in other

periods. Specifically, we assume that the monetary policy shock in October 1979 was the

largest positive realisation of the monetary policy shock in the sample period. The large

number of constraints generated by this restriction poses numerical challenges for existing

algorithms that have been used to conduct inference under traditional sign restrictions, so we

adapt algorithms recently developed by Amir-Ahmadi and Drautzburg (2019). We find that

the shock-rank restriction substantially tightens inference about the effects of US monetary

policy relative to the restrictions on the historical decomposition used in AR18.

Outline. The remainder of the paper is structured as follows. Section 2 explores the

econometric issues that arise when imposing NR using a simple bivariate example. Section 3

sets these issues out in a general SVAR(p) framework and introduces our novel shock-rank

restrictions. Section 4 explains how to conduct prior-robust Bayesian inference under NR and

explores the frequentist properties of this approach. Section 5 describes numerical algorithms

that can be used to conduct single-prior Bayesian inference using the unconditional likelihood

to construct the posterior and to conduct prior-robust Bayesian inference under NR. Section 6

contains the empirical application.

Generic notation: For the matrix X, vec(X) is the vectorisation of X and vech(X) is the

half-vectorisation of X (when X is symmetric). ei,n is the ith column of the n× n identity

matrix, In. 0n×m is a n × m matrix of zeros. Sn−1 is the unit sphere in Rn. 1(.) is the

indicator function. ‖.‖ is the Euclidean norm.
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2 A Bivariate Example

This section sets out the econometric issues that arise when imposing NR, using the simplest

possible SVAR – a bivariate SVAR(0) – as an example. We abstract from dynamics for ease

of exposition, but this is without loss of generality.

Consider the bivariate SVAR(0) A0yt = εt, for t = 1, . . . , T , where yt = (y1t, y2t)
′

and εt = (ε1t, ε2t)
′ with εt

iid∼ N(02×1, I2). The orthogonal reduced form of the model sets

A0 = Q′Σ−1
tr , where Σtr is the lower-triangular Cholesky factor (with positive diagonal

elements) of the innovation covariance matrix Σ = E(yty
′
t) = A−1

0

(
A−1

0

)′
. We parameterise

Σtr directly as

Σtr =

[
σ11 0

σ21 σ22

]
(σ11, σ22 > 0),

and denote the vector of reduced-form parameters as φ = vech(Σtr). Q is an orthonormal

matrix in the space of 2× 2 orthonormal matrices, O(2):

Q ∈ O(2) =

{[
cos θ − sin θ

sin θ cos θ

]
: θ ∈ [−π, π]

}
∪

{[
cos θ sin θ

sin θ − cos θ

]
: θ ∈ [−π, π]

}
,

where the first set is the set of ‘rotation’ matrices and the second set is the set of ‘reflection’

matrices. We henceforth leave the restriction θ ∈ [−π, π] implicit.

In the absence of any restrictions, the set of values for A0 that are consistent with the

reduced-form parameters is

A0 ∈

{
1

σ11σ22

[
σ22 cos θ − σ21 sin θ σ11 sin θ

−σ21 cos θ − σ22 sin θ σ11 cos θ

]
,

1

σ11σ22

[
σ22 cos θ − σ21 sin θ σ11 sin θ

σ22 sin θ − σ21 cos θ −σ11 cos θ

]}
.

(1)

We impose the ‘sign normalisation’ that the diagonal elements of A0 are nonnegative.

Typically the object of interest in analyses using SVARs is the impulse response rather

than the structural parameters themselves. In the absence of restrictions, the set of admis-

sible values for the matrix of contemporaneous impulse responses is

A−1
0 ∈

{[
σ11 cos θ −σ11 sin θ

σ21 cos θ + σ22 sin θ σ22 cos θ − σ21 sin θ

]
,

[
σ11 cos θ σ11 sin θ

σ21 cos θ + σ22 sin θ σ21 sin θ − σ22 cos θ

]}
.

(2)

We denote the contemporaneous impulse response of y1t to a standard-deviation structural

shock to y1t by η ≡ σ11 cos θ.

6



2.1 Restrictions on the sign of a structural shock

Consider the restriction that ε1k is nonnegative for k ∈ {1, . . . , T}:

ε1k = e′1,2A0yk = (σ11σ22)−1 (σ22y1k cos θ + (σ11y2k − σ21y1k) sin θ) ≥ 0. (3)

We refer to this type of restriction as a ‘shock-sign’ restriction. Under the sign normalisation

and the shock-sign restriction, θ is restricted to the set

θ ∈ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≥ 0, σ22y1k cos θ ≥ (σ21y1k − σ11y2k) sin θ}

∪ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≤ 0, σ22y1k cos θ ≥ (σ21y1k − σ11y2k) sin θ} . (4)

Since y1k and y2k enter the inequalities characterising this set, the shock-sign restriction

induces a set-valued mapping from the reduced-form parameter φ to the parameter θ that

depends on the realisation of the data in the period in which the shock-sign restriction is

imposed. For example, if σ21 < 0, σ21y1k − σ11y2k > 0 and y1k > 0,

θ ∈
[
arctan

(
σ22

σ21

)
, arctan

(
σ22y1k

σ21y1k − σ11y2k

)]
.4 (5)

Assume that the econometrician observes yT = (y′1, . . . ,y
′
T )′. For simplicity, we assume

for now that the econometrician knows φ.5

When conducting Bayesian inference, AR18 construct the posterior using the conditional

likelihood, which is the likelihood of observing the data conditional on the NR holding. Given

the realisation of the data in period k, Equation 3 implies that the restricted structural shock

can be written as a function ε1k(θ,φ,yk). The conditional likelihood is then

p
(
yT |θ,φ, ε1k(θ,φ,yk) ≥ 0

)
=

∏T
t=1(2π)−

n
2 |Σ|− 1

2 exp
(
−1

2
y′tΣ

−1yt
)

Pr(ε1k ≥ 0|θ,φ)
1 (ε1k(θ,φ,yk) ≥ 0) ,

(6)

where n = 2 is the dimension of the SVAR. The numerator in the first term is a function

only of the reduced-form parameter φ and the data yT , and is therefore independent of

θ. Also, Pr(ε1k ≥ 0|θ,φ) = 1/2, since the marginal distribution of ε1k is standard nor-

mal. The conditional likelihood therefore depends on θ only through the indicator function

1 (ε1k(θ,φ,yk) ≥ 0). The conditional likelihood function is flat over the region for θ sat-

isfying the shock-sign restriction and is zero outside this region; that is, the likelihood is

truncated, with the truncation points depending on the realisation of the data entering the

4See Appendix A for the full analytical characterisation of this mapping.
5φ is point-identified from the Cholesky decomposition of Σ = E(yty

′
t).
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narrative sign restriction.

To illustrate, the top-left panel of Figure 1 plots the likelihood function given different

realisations of the data drawn from a data-generating process with σ21 < 0.6 The likelihood

is clearly flat, with the support of the nonzero region depending on the particular realisation

of the data. The flat likelihood function implies that the posterior distribution will be

proportional to the prior in the regions where the likelihood function is nonzero, and it

will be zero outside these regions. The standard algorithm for inference in Bayesian SVARs

identified via sign restrictions implies a uniform (or Haar) prior over Q, as does the algorithm

proposed in AR18.7 In the bivariate example, this is equivalent to a prior for θ that is uniform

over the interval [−π, π]. Clearly, this prior implies that the posterior for θ is also uniform

over the interval for θ where the likelihood function is nonzero.

Figure 1: Shock-sign Restriction

Notes: T = 3, φ is known and ε1k(θ,φ,yk) ≥ 0 is the narrative sign restriction; likeli-
hood in top-left panel is zero outside of plotted intervals; posterior density of η is
approximated using 1,000,000 draws of θ from its (uniform) posterior distribution.

The top-right panel of Figure 1 plots the posterior distribution for the impulse response

η induced by a uniform prior over θ given the same realisations of the data for which the

likelihood was plotted in the top-left panel. The uniform posterior for θ induced by the

flat likelihood and uniform prior induces a posterior for η that is clearly non-uniform. In

particular, the posterior for η assigns more probability mass to more-extreme values of η.

This is also the case in standard set-identified SVARs (see Baumeister and Hamilton (2015)).

6The data-generating process assumes A0 =

[
1 0.5

0.2 1.2

]
, which implies that θ = arcsin(0.5σ22) with Q

equal to the rotation matrix. We assume the time series is of length T = 3 and draw sequences of structural
shocks such that ε1,1 ≥ 0. We set T to a small number to control Monte Carlo sampling error in exercises
below without needing to resort to extremely large Monte Carlo sample sizes.

7See, for example, Rubio-Ramı́rez, Waggoner and Zha (2010), Baumeister and Hamilton (2015) and Arias,
Rubio-Ramı́rez and Waggoner (2018).
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One difference here is that the support and shape of the posterior for the impulse response

depends on the realisation of the data in period k through its effect on the truncation points

of the likelihood, whereas under standard sign restrictions the posterior does not depend on

the realisation of the data given the reduced-form parameters. For example, when σ21 < 0,

σ21y1k − σ11y2k > 0 and y1k > 0,

η ∈
[
σ11 cos

(
arctan

(
max

{
−σ22

σ21

,
σ22y1k

σ21y1k − σ11y2k

}))
, σ11

]
. (7)

2.2 Restrictions on the historical decomposition

The historical decomposition is the contribution of a particular structural shock to the ob-

served change in a particular variable over some horizon. Let Hi,j,t represent the contribution

of the jth structural shock to the unexpected change in the ith variable in period t. AR18

consider two broad types of restrictions on the historical decomposition. One imposes that

the jth shock was the ‘overwhelming contributor’ to the observed change in the ith variable,

which requires that |Hi,j,t| ≥
∑

k 6=j |Hi,k,t|. The other imposes that the jth shock was the

‘most important contributor’ to the observed change in the ith variable, which requires that

|Hi,j,t| ≥ maxk 6=j |Hi,k,t|. In a bivariate SVAR, these two restrictions are identical. AR18

impose these restrictions alongside shock-sign restrictions.

The contribution of the first shock to the change in the first variable in the kth period

is equal to the impact impulse response of the first variable to the first shock multiplied by

the realisation of the first shock in the kth period. In the bivariate example, this is

H1,1,k(θ,φ,yk) = σ−1
22

(
σ22y1k cos2 θ + (σ11y2k − σ21y1k) cos θ sin θ

)
. (8)

The contribution of the second shock to the change in the first variable in the kth period is

H2,1,1(θ,φ,yk) = σ−1
22

(
σ22y1k sin2 θ − (σ11y2k + σ21y1k) cos θ sin θ

)
. (9)

Consider the restriction that the first structural shock was positive and that it was the

most important (or overwhelming) contributor to the change in the first variable in the kth

period. Under these restrictions and the sign normalisation, the set of values that θ can

take will be defined by a set of inequalities that depend on the reduced-form parameters

and the realisation of the data in period k. As in the case of the shock-sign restriction, this

set of restrictions will generate a mapping from the reduced-form parameters to the set of
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admissible values of θ that will depend on the realisation of the data in period k.8

LetD represent the event {ε1k ≥ 0, |H̃1,1,k(θ,φ, ε1k)| ≥ |H̃2,1,k(θ,φ, ε2k)|}, where H̃i,j,k(θ,φ, εk)

is the historical decomposition as a function of the period-k structural shocks rather than

the data. The conditional likelihood function given these restrictions is

p
(
yT |θ,φ,D

)
=∏T

t=1(2π)−
n
2 |Σ|− 1

2 exp
(
−1

2
y′tΣ

−1yt
)

Pr(D|θ,φ)
×1 (ε1k(θ,φ,yk) ≥ 0, |H1,1,k(θ,φ,yk)| ≥ |H2,1,k(θ,φ,yk)|) .

(10)

As in the case of the shock-sign restriction, the numerator of the first term is independent of

θ. In contrast, when the historical decomposition is restricted, the probability that the shocks

satisfy the restriction depends on θ through the historical decomposition. The conditional

likelihood therefore depends on θ both through this probability and through the indicator

function determining the truncation points of the likelihood. Consequently, the likelihood

function is not necessarily flat when it is nonzero.

To illustrate, the left panel of Figure 2 plots the likelihood function for a random re-

alisation of the data satisfying the restrictions using the same data-generating process as

above and assuming that φ is known. The probability in the denominator of the likelihood

is estimated by drawing 1,000,000 realisations of εk (a bivariate standard normal random

variable) and computing the proportion of draws satisfying the restriction at each value of θ.9

This probability is plotted in the right panel of Figure 2. The likelihood is again truncated

depending on the realisation of the data, but within the range where it is nonzero it is no

longer flat. Despite there being a set-valued mapping from φ and yk to θ, the likelihood

has a unique maximum occurring at the value of θ that minimises the probability that the

NR are satisfied (within the set of values of θ that are consistent with the restrictions). The

posterior distribution for θ induced by a uniform prior will clearly assign greater posterior

probability to values of θ that yield a lower probability of satisfying the NR.

It is well-known in statistics that when conducting likelihood-based inference, one should

condition only on events whose probability of occurring does not depend on the parameter of

interest, or ‘ancillary’ events. When the only NR is a shock-sign restriction, the probability

that the restriction is satisfied is independent of the parameters; that is, the event that the

8See Appendix A for this set of inequalities. It is more difficult to analytically characterise the mapping
from reduced-form parameters and realisations of the data to θ than in the shock-sign example, so we do
not pursue this.

9One could potentially compute this probability without recourse to Monte Carlo methods, since
|H̃1,1,k(θ,φ, ε1k)| − |H̃2,1,k(θ,φ, ε2k)| is the difference between two independent half-normal distributions,

and the event ε1k ≥ 0 is independent of the event |H̃1,1,k(θ,φ, ε1k)| ≥ |H̃2,1,k(θ,φ, ε2k)|.
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Figure 2: Restriction on the Historical Decomposition – Conditional Likelihood
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Notes: T = 3 and φ is known; ε1,1(φ, θ,yk) ≥ 0 and |H1,1,1(φ, θ,yk)| ≥ |H2,1,1(φ, θ,yk)|
are the narrative sign restrictions; Pr(ε1k ≥ 0, |H1,1,k(θ, εk)| ≥ |H2,1,1(θ, εk)|) is
approximated using 1,000,000 Monte Carlo draws.

NR is satisfied is ancillary, and the conditional and unconditional likelihoods are identical up

to a scale factor. In the case where there is also a restriction on the historical decomposition,

the probability that the NR are satisfied depends on the parameter of interest. The event

that the NR are satisfied is therefore not ancillary. Using the conditional likelihood to

construct the posterior distribution will put more weight on values of θ that yield lower

probabilities that the NR are satisfied. This lower posterior probability does not reflect any

prior information about the probability that the NR are satisfied. It also does not reflect

any new information in the data, since the probability that the NR are satisfied does not

depend on the data. We therefore advocate forming the likelihood without conditioning on

the restrictions holding.

The joint (unconditional) likelihood of observing the data and the NR holding is obtained

by multiplying the conditional likelihood by the probability that the NR are satisfied:

p
(
yT , 1(D) = 1|θ,φ

)
=

T∏
t=1

(2π)−
n
2 |Σ|−

1
2 exp

(
−1

2

(
y′tΣ

−1yt
))
×1 (ε1k(θ,φ,yk) ≥ 0, |H1,1,k(θ,φ,yk)| ≥ |H2,1,k(θ,φ,yk)|) .

(11)

Conditional on being nonzero, the unconditional likelihood function is flat with respect to

θ; θ only affects the unconditional likelihood through the points of truncation. To illustrate,

Figure 3 plots the unconditional likelihood function given the same realisation of the data

used in Figure 2. As in the case of the shock-sign restriction, the flat unconditional likelihood

implies that posterior inference may be sensitive to the choice of prior.
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Figure 3: Restriction on the Historical Decomposition – Unconditional
Likelihood
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Notes: T = 3 and φ is known; ε1k(θ,φ,yk) ≥ 0 and |H1,1,1(φ, θ,yk)| ≥ |H2,1,1(φ, θ,yk)|
are the narrative sign restrictions.

3 General Framework

This section sets out the issues discussed above in the general framework of an SVAR(p) and

formalises the sense in which NR can be considered identifying restrictions.

3.1 The Structural Vector Autoregression

Let yt be an n× 1 vector of endogenous variables following the SVAR(p) process:

A0yt =

p∑
l=1

Alyt−l + εt, t = 1, ..., T, (12)

where A0 has positive diagonal elements (a sign normalisation) and is invertible, and εt
iid∼

N(0n×1, In) are structural shocks. The initial conditions (y1−p, ...,y0) are given. We omit

exogenous regressors (such as a constant) for simplicity of exposition, but these are straight-

forward to include. Letting xt = (y′t−1, . . . ,y
′
t−p)

′ and A+ = (A1, . . . ,Ap), rewrite the

SVAR(p) as

A0yt = A+xt + εt, t = 1, ..., T. (13)

(A0,A+) are the structural parameters. The reduced-form VAR(p) representation is

yt = Bxt + ut, t = 1, ..., T, (14)

where B = (B1, . . . ,Bp), Bl = A−1
0 Al for l = 1, . . . , p, and ut = A−1

0 εt
iid∼ N(0n×1,Σ) with

Σ = A−1
0 (A−1

0 )′. φ = (vec(B)′, vech(Σ)′)′ ∈ Φ are the reduced-form parameters. We assume
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that B is such that the VAR(p) can be inverted into an infinite-order vector moving average

(VMA(∞)) model.10

As is standard in the literature that considers set-identified SVARs, we reparameterise

the model into its ‘orthogonal reduced form’:

yt = Bxt + ΣtrQεt, t = 1, ..., T, (15)

where Σtr is the lower-triangular Cholesky factor of Σ (i.e. ΣtrΣ
′
tr = Σ) with diagonal

elements normalized to be non-negative, Q is an n× n orthonormal matrix and O(n) is the

set of all such matrices. The parameterisations are related through the mapping B = A−1
0 A+,

Σ = A−1
0 (A−1

0 )′ and Q = Σ−1
tr A−1

0 , or A0 = Q′Σ−1
tr and A+ = Q′Σ−1

tr B.

The VMA(∞) representation of the model is

yt =
∞∑
h=0

Chut−h =
∞∑
h=0

ChΣtrQεt, t = 1, ..., T, (16)

where Ch is the hth term in (In −
∑p

l=1 BlL
l)−1 and L is the lag operator.11 The (i, j)th

element of the matrix ChΣtrQ, which we denote by ηi,j,h(φ,Q), is the impulse response of

the ith variable to the jth structural shock at the hth horizon:

ηi,j,h(φ,Q) = e′i,nChΣtrQej,n = c′i,h(φ)qj, (17)

where c′i,h(φ) ≡ e′i,nChΣtr is the ith row of ChΣtr and qj ≡ Qej,n is the jth column of Q.

The historical decomposition is the cumulative contribution of the jth shock to the ob-

served unexpected change in the ith variable between periods t and t+ h:

Hi,j,t,t+h =
h∑
l=0

e′i,nClΣtrQej,ne
′
j,nεt+h−l =

h∑
l=0

c′i,l(φ)qjq
′
jΣ
−1
tr ut+h−l. (18)

3.2 Narrative restrictions

In the absence of any restrictions on A0, it is well-known that A0 (and thus A+) is set-

identified. Since any A0 = Q′Σ−1
tr satisfies A−1

0 (A−1
0 )′ = Σ, the identified set for A0 is

{A0 = Q′Σ−1
tr : Q ∈ O(n)}. Imposing traditional identifying restrictions on the SVAR is

equivalent to restricting Q to lie in a subspace of O(n). It is conventional to impose a ‘sign

normalisation’ on the structural shocks. We normalise the diagonal elements of A0 to be

10The VAR(p) is invertible into a VMA(∞) process when the eigenvalues of the companion matrix lie
inside the unit circle. See Hamilton (1994) or Kilian and Lütkepohl (2017).

11Ch is defined recursively by Ch =
∑min{k,p}
l=1 BlCh−l for h ≥ 1 with C0 = In.
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non-negative, so a positive value of εit is a positive shock to the ith equation in the SVAR

at time t. The sign normalisation implies that diag(Q′Σ−1
tr ) ≥ 0n×1.

The sign restrictions proposed by Uhlig (2005) restrict the impulse responses of particular

variables to particular shocks. The restriction that the horizon-h impulse response of the

ith variable to the jth shock is nonnegative is c′i,h(φ)qj ≥ 0, which is a linear inequality

restriction on a single column of Q that depends only on the reduced-form parameter φ.

Restrictions on elements of A0 take a similar form.

In contrast, the NR proposed by AR18 constrain the sign of the structural shocks and/or

the historical decomposition in particular periods. The structural shocks are

εt = A0ut = Q′Σ−1
tr ut. (19)

The ith structural shock at time t is therefore

εit(φ,Q,ut) = e′i,nQ
′Σ−1

tr ut = (Σ−1
tr ut)

′qi. (20)

Given knowledge of the reduced-form VAR parameters φ and the reduced-form VAR inno-

vations ut (which follows from knowledge of φ and the data (yt,xt)), a shock-sign restriction

is a linear inequality restriction on a single column of Q. In contrast with traditional sign

restrictions, a shock-sign restriction depends on the data (yt,xt) through the reduced-form

VAR innovations independently of the reduced-form parameters φ.

AR18 consider two types of inequality restrictions that constrain the historical decom-

position. An example of their ‘Type A’ restrictions is that the jth structural shock is

the ‘most important contributor’ to the change in the ith variable between periods t and

t + h, which is taken to mean that the absolute cumulative contribution of the jth shock

to the change in the ith variable is larger than the contribution of any other shock, or

|Hi,j,t,t+h| ≥ maxk 6=j |Hi,k,t,t+h|. Another example of a Type A restriction is that the jth struc-

tural shock is the ‘least important contributor’, in which case |Hi,j,t,t+h| ≤ mink 6=j |Hi,k,t,t+h|.
An example of their ‘Type B’ restrictions is that the jth structural shock is the ‘overwhelm-

ing contributor’ to the change in the ith variable between periods t and t + h, which is

taken to mean that the absolute cumulative contribution of the jth structural shock to the

change in the ith variable is larger than the sum of the contributions of all other shocks,

or |Hi,j,t,t+h| ≥
∑

k 6=j |Hi,k,t,t+h|. Conversely, the jth shock is a ‘negligible contributor’ when

|Hi,j,t,t+h| ≤
∑

k 6=j |Hi,k,t,t+h|. From Equation 18, it is clear that Type A and Type B restric-

tions are nonlinear inequality restrictions that simultaneously constrain every column of Q

and that depend on the realisations of the data in particular periods independently of the

reduced-form parameters.
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A restriction not considered in AR18 is a restriction on the relative magnitudes of a

particular structural shock in different periods. We refer to this type of restriction as

a ‘shock-rank’ restriction. For example, in addition to requiring that the ith shock was

positive in the tth period (a shock-sign restriction), one could impose that the ith struc-

tural shock in period t was the largest positive realisation of this shock. This requires

that εit(φ,Q,ut) ≥ maxk 6=t{εik(φ,Q,uk)}, which can be expressed as a system of T − 1

linear inequality restrictions on a single column of Q: (Σ−1
tr (ut − uk))

′qi ≥ 0 for k 6= t.

Similarly, one could impose that the ith shock in the tth period was the largest negative

realisation of this shock. These restrictions could also be applied to a subset of the obser-

vations rather than the full sample. For example, one could impose that the ith shock in

the tth period was the largest positive realisation of the shock in periods t1, t2, . . . , tK . One

could also impose that the ith shock in period t was the largest-magnitude realisation of

that shock, or |εit(φ,Q,ut)| ≥ maxk 6=t {|εik(φ,Q,uk)|}. If εit > 0, this would require that

(Σ−1
tr (ut − uk))

′qi ≥ 0 and (Σ−1
tr (ut + uk))

′qi ≥ 0 for k 6= t, which is a system of 2(T − 1)

linear inequalities constraining qi.

Assume that there are s NR that constrain the structural shocks in K distinct periods,

t1, . . . , tK . Let U = (u′t1 , . . . ,u
′
tK

)′ collect the reduced-form VAR innovations in these pe-

riods. The collection of NR are represented in the general form N(φ,Q,U) ≥ 0s×1. As

an example, consider the case where there is a single shock-sign restriction in period k,

ε1k(φ,Q,uk) ≥ 0, as well as a Type A restriction that the first structural shock is the most

important contributor to the change in the first variable in period k. Then

N(φ,Q,U) =

[
(Σ−1

tr uk)
′q1

|e′1,nΣtrq1q
′
1Σ
−1
tr uk| −maxj 6=1 |e′1,nΣtrqjq

′
jΣ
−1
tr uk|

]
≥ 02×1. (21)

The set of NR and the sign normalisation will generate a set-valued mapping from φ to Q

that depends on the realisation of the data through U. In general, the set of values of Q

satisfying the NR and the sign normalisation is {Q : N(φ,Q,U) ≥ 0s×1, diag(Q′Σ−1
tr ) ≥

0n×1,Q ∈ O(n)}.
Traditional sign and zero restrictions can also be applied alongside NR. In what follows,

we follow AR18 by explicitly allowing for sign restrictions on impulse responses and on

elements of A0. We denote such sign restrictions by S(φ,Q) ≥ 0s̃×1, where s̃ is the number

of traditional sign restrictions. It is straightforward to additionally allow for zero restrictions,

including ‘short-run’ zero restrictions (as in Sims (1980) and Christiano, Eichenbaum and

Evans (1999)), ‘long-run’ zero restrictions (as in Blanchard and Quah (1989)), or restrictions

arising from external instruments (as in Stock and Watson (2012) and Mertens and Ravn

(2013)); for example, see GK18 and Giacomini, Kitagawa and Read (2019).
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3.3 Conditional and unconditional likelihoods

Let YT = (y′1, . . . ,y
′
T )′ collect the data, let ε = (ε′t1 , . . . , εtK )′ collect the structural shocks in

the periods in which the NR are imposed, and let Ñ(φ,Q, ε) ≥ 0s×1 represent the collection

of NR as a function of the structural shocks rather than the data. The likelihood conditional

on the NR holding is

p(YT |N(φ,Q,U) ≥ 0s×1,φ,Q) =[∏T
t=1(2π)−

n
2 |Σ|− 1

2 exp
(
−1

2
((yt −Bxt)

′Σ−1(yt −Bxt))
)

Pr(Ñ(φ,Q, ε) ≥ 0s×1|φ,Q)

]
× 1 (N(φ,Q,U) ≥ 0s×1) , (22)

where we have suppressed conditioning on the initial conditions. The numerator of the term

in square brackets depends only on φ and the data, and is thus independent of Q. The

indicator function determines the truncation points of the likelihood and depends on U.

The truncation points therefore depend on the data that enter the NR through U. The

denominator of the first term, which is the probability that the NR are satisfied, will be a

constant when there are only shock-sign or shock-rank restrictions.12 However, when there

are restrictions on the historical decomposition, this probability will depend on φ and Q.

Importantly, even if φ is known, the conditional likelihood will depend on Q through this

probability. Moreover, given φ, the conditional likelihood will be maximised at the value of

Q that minimises the probability that the NR are satisfied.

As discussed in Section 2 for the bivariate case, these issues suggest that one should con-

struct the likelihood without conditioning on the NR holding when the probability that the

restrictions are satisfied depends on the structural parameters. The joint (or unconditional)

likelihood of observing the data and the NR being satisfied is

p(YT , N(φ,Q,U) ≥ 0s×1|φ,Q) =[
T∏
t=1

(2π)−
n
2 |Σ|−

1
2 exp

(
−1

2

(
(yt −Bxt)

′Σ−1(yt −Bxt)
))]

× 1 (N(φ,Q,U) ≥ 0s×1) . (23)

The term in square brackets depends only on φ and the data, and is thus independent of Q.

As in the case of the conditional likelihood, the truncation points of the likelihood depend

on U independently of φ. As in the bivariate case (where Q was summarised by the scalar

parameter θ), the likelihood function will be flat with respect to Q in a particular region

of the parameter space and will be zero outside this region. In other words, at every value

of φ there will be a set of values of Q that satisfy the restrictions, which depend on the

12If there are s shock-sign restrictions, Pr(Ñ(φ,Q, ε) ≥ 0s×1|φ,Q) = (1/2)s.
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data, but the value of the likelihood will be the same for all such values of Q. The posterior

of Q|φ,YT will therefore be proportional to the prior for Q|φ in these regions. Given a

fixed number of NR, the likelihood will possess flat regions even with a time-series of infinite

length, so posterior inference may be sensitive to the choice of prior, even asymptotically.

This motivates considering Bayesian inferential procedures that are robust to the choice of

unrevisable prior for Q, as discussed in GK18.

3.4 Point identification under NR

As argued in Sections 3.2 and 3.3, the mapping from the reduced-form parameters to the

structural parameters is set-valued, whereas an important distinction from the standard set-

identified SVARs is that the set-valued map under NR depends on the data. This raises a

theoretical question of whether the NR-SVAR model is point-identified or not in a formal

frequentist sense. This subsection examines point-identification of the structural parameters

under NR for both unconditional and conditional likelihood models.

To suppress the notation, let U(YT ;φ) be the value of the reduced-form residuals pinned

down by given YT and φ, and define

DN = DN(φ,Q,YT ) ≡ 1{N(φ,Q,U(YT ;φ)) ≥ 0s×1},

r(φ,Q) ≡ Pr(DN(φ,Q,YT ) = 1|φ,Q),

f(YT |φ) ≡
T∏
t=1

(2π)−
n
2 |Σ|−

1
2 exp

(
−1

2
(yt −Bxt)

′Σ−1 (yt −Bxt)

)
.

Then, the unconditional likelihood (the joint distribution of YT and DN) can be expressed

as

p(YT , DN = d|φ,Q) =
[
f(YT |φ)DN(φ,Q,YT )

]d · [f(YT |φ)
(
1−DN(φ,Q,YT )

)]1−d
= f(YT |φ) ·

[
DN(φ,Q,YT )

]d · [1−DN(φ,Q,YT )
]1−d

. (24)

Denoting the true parameter value by (φ0,Q0), point-identification for the parametric model

(24) requires that there is no other parameter value (φ,Q) 6= (φ0,Q0) that is observationally

equivalent to (φ0,Q0).13

To assess the existence or non-existence of observationally equivalent parameter points,

we analyze a statistical distance between p(YT , DN = d|φ,Q) and p(YT , DN = d|φ0,Q0).

Specifically, in the current setting where the support of the distribution of observables can

13(φ,Q) 6= (φ0,Q0) is observationally equivalent to (φ0,Q0) if p(YT , DN = d|φ,Q) = p(YT , DN =
d|φ0,Q0) holds for all YT and d ∈ {0, 1}.
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depend on the parameters, it is convenient to work with the Hellinger distance:

HD(φ,Q) ≡
∑
d=0,1

∫
YT

(
p1/2(YT , DN = d|φ,Q)− p1/2(YT , DN = d|φ0,Q0)

)2
dYT

= 2 (1−H(φ,Q)) , where

H(φ,Q) ≡
∑
d=0,1

∫
YT

p1/2(YT , DN = d|φ,Q) · p1/2(YT , DN = d|φ0,Q0)dYT . (25)

As is known in the literature on minimum distance estimation (see, e.g., Basu, Shioya and

Park 2011), (φ,Q) and (φ0,Q0) are observationally equivalent if and only if HD(φ,Q) = 0,

or equivalently, H(φ,Q) = 1.

The conditional likelihood given DN = 1 can be written as

p(YT , |DN = 1,φ,Q) =
f(YT |φ)

r(φ,Q)
·DN(φ,Q,YT ). (26)

Accordingly, we define the Hellinger distance for the conditional likelihood as

HD(φ,Q) ≡ 2 (1−Hc(φ,Q)) , where

Hc(φ,Q) ≡
∫

YT

p1/2(YT |DN = 1,φ,Q) · p1/2(YT |DN = 1,φ0,Q0)dYT . (27)

The next proposition analyzes the conditions for H(φ,Q) = 1 and Hc(φ,Q) = 1, and

shows that the observational equivalence between (φ,Q) and (φ0,Q0) boils down to the

geometric equivalence of the set of reduced-form residuals satisfying the narrative restrictions,

{U : N(φ,Q,U) ≥ 0s×1}.

Proposition 3.1. Let (φ0,Q0) be the true parameter value. Define

Q∗ ≡

{
Q ∈ O(n) : {U : N(φ,Q,U) ≥ 0s×1} = {U : N(φ0,Q0,U) ≥ 0s×1} up to f(YT |φ0)-null set,

diag(Q′Σ−1
tr ) ≥ 0n×1

}
.

The unconditional likelihood model (24) and the conditional likelihood model (26) are globally

identified (i.e., no observationally equivalent parameter points to (φ0,Q0)) if and only if Q∗

is a singleton. If the parameter of interest is an impulse response to the jth structural

shock, ηi,j,h(φ,Q) = c′i,h(φ)qj, as defined in (17), then ηi,j,h(φ,Q) is point-identified if the

projection of Q∗ onto the jth column vector is a singleton.

Proof. See Appendix B.

This proposition provides a necessary and sufficient condition for global identification
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of SVARs by NR. As shown in the proof in Appendix B, Q∗ defined in this proposition

corresponds to the observationally equivalent Q matrices given φ = φ0, but, importantly, it

does not correspond to any flat region of the observed likelihood (conditional identified sets

in Definition 4.1 below).

To illustrate this point, consider the simple bivariate example of Section 2 with the NR

(3), where yt itself is the reduced-form error, so U in Proposition 3.1 can be set to yk. Given

φ0 = (σ11, σ21, σ22), the set of yk ∈ R2 satisfying the NR is the half-space given by{
yk ∈ R2 : (σ11σ22)−1

(
σ22 cos θ − σ21 sin θ, σ11 sin θ

)
yk ≥ 0

}
. (28)

The condition for point-identification shown in Proposition 3.1 is satisfied if no θ′ 6= θ can

generate the half-space of yk identical to (28). Such θ′ cannot exist, since a half-space passing

through the origin (a1, a2)yk ≥ 0 can be indexed uniquely by the slope a1/a2 and (28) implies

the slope σ−1
11 (σ22(tan θ)−1− σ21) is a bijective map of θ on a constrained domain due to the

sign normalization restriction.

Figure 4 plots the Hellinger distances in this bivariate example under the shock-sign

restriction (3) and the historical decomposition restriction. For both the conditional and

unconditional likelihood, the Hellinger distances are minimized uniquely at the true θ, con-

firming our point-identification claim for θ.14

Figure 4: Hellinger Distance
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Notes: T = 3 and φ is known; Hellinger distances are approximated using Monte Carlo.

Although a single NR can deliver point-identification of θ in the frequentist sense, the

practical implication of this theoretical claim is not obvious. The observed unconditional

14For the historical decomposition case, a notable difference between the conditional and unconditional
likelihood cases is in the slope of the Hellinger distance around the minimum. The Hellinger distance of
the unconditional likelihood yields a steeper slope than the conditional likelihood. This indicates the loss of
information for θ in the conditional likelihood due to conditioning on the non-ancillary event.
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likelihood is almost always flat at the maximum, so we cannot obtain a unique maximum

likelihood estimator for the structural parameter. As a result, the standard asymptotic

approximation of the sampling distribution of the maximum likelihood estimator is not

applicable. The SVAR model with NR possesses features of set-identified models from the

Bayesian standpoint (i.e., flat regions of the likelihood). However, strictly speaking, it can

be classified as a globally identified model in the frequentist sense when the condition of

Proposition 3.1 holds.

4 Robust Bayesian Inference Under NR

This section explains how to conduct prior-robust Bayesian inference about a scalar-valued

function of the structural parameters under narrative and traditional sign restrictions. The

approach is an extension of that in GK18 with some modifications to account for the novel

features of the NR. We assume that the object of interest is a particular impulse response

η, although the discussion in this section also applies to any other scalar-valued function of

the structural parameters, such as the forecast error variance decomposition or the historical

decomposition.

We introduce our proposal primarily for the purpose of performing a global sensitivity

analysis, where one wants to assess what posterior conclusion is robust to the choice of prior

on the flat regions of the likelihood. We subsequently establish approximate frequentist

validity of our robust Bayes proposal from the conditional frequentist perspective, assuming

that the number of time periods in which the shock restrictions are imposed is small relative

to the sample size.

4.1 Assessing posterior sensitivity

Let Q(φ|S) = {Q : S(φ,Q) ≥ 0s̃×1, diag(Q′Σ−1
tr ) ≥ 0n×1,Q ∈ O(n)} represent the

set of orthonormal matrices satisfying any traditional sign restrictions and the sign nor-

malisation, and let πφ be a prior over the reduced-form parameter φ. A joint prior for

θ = (φ′, vec(Q)′)′ ∈ Φ× vec(O(n)) can be written as πθ = πQ|φπφ, where πQ|φ is supported

only on Q(φ|S). When there are only traditional identifying restrictions, the prior for Q|φ
is not updated by the data, because the likelihood function is not a function of Q. Posterior

inference may therefore be sensitive to the choice of conditional prior, even asymptotically.

As discussed above, a similar issue arises under NR. The difference is that the prior is up-

dated by the data through the truncation points of the likelihood. However, within the set of

values of Q given φ and satisfying the NR, the likelihood is flat. Consequently, the posterior
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for Q given φ and satisfying the NR is proportional to the prior at each φ.

Rather than specifying a single prior for Q|φ, the robust Bayesian approach of GK18

considers the class of all priors for Q|φ that are consistent with the traditional identifying

restrictions:

ΠQ|φ =
{
πQ|φ : πQ|φ(Q(φ|S)) = 1

}
. (29)

Notice that we cannot impose the NR using a particular conditional prior on Q|φ. This

is because the NR generate a mapping from the reduced-form parameters to the structural

parameters that depends on the realisation of the data independently of the reduced-form

parameters, and the prior clearly cannot depend on the realisation of the data. However,

by considering all possible priors for Q|φ that are consistent with the traditional identifying

restrictions, we can trace out all possible posteriors for Q|φ,YT that are consistent with

the traditional identifying restrictions and the NR. This is because the NR truncate the

likelihood function and the traditional identifying restrictions truncate the prior for Q|φ,

so the posterior for Q|φ,YT is supported only on the values of Q that satisfy both sets of

restrictions.

Let πYT ,N(φ,Q,U)≥0s×1|φ,Q represent the unconditional likelihood of observing the data

and the NR being satisfied. From Equation (23), it is clear that πYT ,N(φ,Q,U)≥0s×1|φ,Q =

πYT |φ1(N(φ,Q,U) ≥ 0s×1). Given a particular joint prior for θ, the joint posterior is thus

πθ|YT ,N(φ,Q,U)≥0s×1
∝ πYT ,N(φ,Q,U)≥0s×1|φ,QπQ|φπφ

∝ πYT |φπφπQ|φ1(N(φ,Q,U) ≥ 0s×1)

∝ πφ|YTπQ|φ1(N(φ,Q,U) ≥ 0s×1).

The first line applies Bayes’ rule and decomposes the joint prior for θ into a prior for φ and

a conditional prior for Q|φ, the second line uses Equation (23) and the third line applies

Bayes’ rule again. The final expression for the posterior makes it clear that any prior for Q|φ
that is consistent with the traditional identifying restrictions is in effect further truncated by

the NR (through the likelihood) once the data are realised. Generating this posterior using

every prior within the class of priors for Q|φ generates a class of posteriors for θ:

Πθ|YT ,N(φ,Q,U)≥0s×1
=
{
πθ|YT ,N(φ,Q,U)≥0s×1

= πφ|YTπQ|φ1(N(φ,Q,U) ≥ 0s×1) : πQ|φ ∈ ΠQ|φ
}
.

(30)

Marginalising each posterior for θ in this class of posteriors induces a class of posteriors for η,

Πη|YT ,N(φ,Q,U)≥0s×1
. Each prior within the class of priors ΠQ|φ therefore induces a posterior

for η. Associated with each of these posteriors will be quantities such as the posterior mean,

median and other quantiles. For example, as we consider each possible prior within ΠQ|φ,
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we trace out the set of all possible posterior means for η. This will always be an interval, so

we can summarise this ‘set of posterior means’ by its endpoints:[∫
Φ

l(φ,U)dπφ|YT ,

∫
Φ

u(φ,U)dπφ|YT

]
, (31)

where l(φ,U) = inf{η(φ,Q) : Q ∈ Q̃(φ,U|N,S)}, u(φ,U) = sup{η(φ,Q) : Q ∈ Q̃(φ,U|N,S)}
and

Q̃(φ,U|N,S) = {Q : N(φ,Q,U) ≥ 0s×1,Q ∈ Q(φ|S)} (32)

is the set of values of Q that are consistent with the traditional identifying restrictions and the

NR. In contrast, in GK18 the set of posterior means is obtained by finding the infimum and

supremum of η(φ,Q) over Q(φ|S). The important difference from GK18 is that the current

set of posterior means depends on the data not only through the posterior for φ but also

through the set of admissible values of Q incorporating the NR. As a result, being different

from GK18, we cannot interpret the set of posterior means (31) as a consistent estimator

for the identified set for η (which is not well-defined, as we discuss below). Nevertheless, the

set of posteriors means (31) still carries a robust Bayes interpretation similar to GK18 such

that it clarifies posterior results that are robust to a choice of prior on the non-updated part

of the parameter space (i.e., on the flat regions of the likelihood).

As in GK18, we can also report a robust credible region with credibility level α, which

is the shortest interval estimate for η such that the posterior probability put on the inter-

val is greater than or equal to α uniformly over the posteriors in Πη|YT ,N(φ,Q,U)≥0s×1
(see

Proposition 1 of GK18). One may also be interested in posterior lower and upper probabili-

ties, which are the infimum and supremum, respectively, of the probability for a hypothesis

over all posteriors in the class. GK18 provide conditions under which their robust Bayesian

approach has a valid frequentist interpretation, in the sense that the robust credible region

is an asymptotically valid confidence set for the true identified set. For the same reason

as mentioned above, however, frequentist validity of the robust credible region does not

immediately extend to the NR case.

4.2 Conditional identified set

To formalize a certain frequentist validity of the robust Bayes credible region under NR, we

require an important refinement of the concept of an identified set. Specifically, we introduce

the ‘conditional identified set’, which extends the standard identified set in set-identified

SVARs to the setting where identification is defined in a repeated sampling experiment

conditional on the set of observations entering the NR.
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Let (Y,Y) and (Θ,A) be measurable spaces of a sample YT ∈ Y and a parameter

vector θ ∈ Θ, respectively. Assume that the conditional distribution of YT given θ exists

and has a probability density p(yT |θ) at every θ ∈ Θ with respect to a σ-finite measure

on (Y,Y), where yT indicates a realisation of YT . Traditionally, set-identification of θ

occurs when there are multiple observationally equivalent values of θ, so that there exists

θ and θ′ 6= θ such that p(yT |θ) = p(yT |θ′) for every yT ∈ Y (e.g., Rothenberg 1971).

Observational equivalence can be represented by a many-to-one function g : (Θ,A)→ (Φ,B)

such that g(θ) = g(θ′) if and only if p(yT |θ) = p(yT |θ′) for every yT ∈ Y. φ = g(θ) is the

‘reduced-form’ parameter, which carries all the information about the structural parameter

θ contained in the data. The identified set for θ is then the inverse image of g(.), ISθ(φ) =

{θ ∈ Θ : g(θ) = φ}.
The complication in applying this definition of the identified set in SVARs when there

are NR is that the reduced-form parameters no longer represent all information about the

structural parameters contained in the data; by truncating the likelihood, the realisations of

the data entering the NR contain additional information about the structural parameters.

To address this, we introduce a refinement of the definition of an identified set.

Definition 4.1. Let N(θ,yT ) ≥ 0s×1 represent a set of NR in terms of the structural

parameters and the data.

(i) Conditional identified set for θ under NR is

ISθ(φ,y
T ) = {θ ∈ Θ : g(θ) = φ, N(θ,yT ) ≥ 0s×1}, (33)

where φ = g(θ) maps the structural parameters to the reduced-form parameters; i.e., g(θ) =

g(θ′) if and only if p(yT |θ) = p(yT |θ′) for every yT ∈ Y. The conditional identified set for

impulse response η = h(θ) under NR is defined by projecting ISθ(φ,y
T ) via h(θ),

ISη(φ,y
T ) = {η = h(θ) : θ ∈ ISθ(φ,yT )}. (34)

(ii) Let s : Y → RS be a statistic. We call s(YT ) a sufficient statistic for the condi-

tional identified set ISθ(φ,y
T ) if the conditional identified set for θ depends on sample

yT through s(yT ); i.e., there exists ĨSθ(φ, ·) such that

ISθ(φ,y
T ) = ĨSθ(φ, s(yT )) (35)

holds for all φ ∈ Φ and yT ∈ Y.

Unlike the standard identified set ISθ(φ), the conditional identified set under NR ISθ(φ,y
T )
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depends on the sample yT because of the aforementioned data-dependent support of the

likelihood. In terms of the observed likelihood, however, they share the property that the

likelihood is flat on the identified set. Hence, given the sample yT and the reduced-form

parameters φ, any structural parameter values in ISθ(φ,y
T ) fit the data equally well and,

in this particular sense, they are observationally equivalent.

When NR concern shocks in only a subset of the time periods in the data, the conditional

identified set under these NR depends on the sample only through a few observations en-

tering the narrative restrictions. The sufficient statistics s(yT ) defined in Definition 4.1 (ii)

represent such observations. For instance, in the toy example of Section 2.1 with a single NR

(3), the conditional identified set depends only on the observations at period k ∈ {1, . . . , T},
so s(yT ) = yk. If we extend the example of Section 2.1 to the SVAR(p), the narrative sign

restriction (3) can be expressed as

ε1k = e′1,2A0uk = e′1,2Q
′Σ−1

tr (yk −Bxk) ≥ 0. (36)

Hence, the conditional identified set ISθ(φ,y
T ) depends on the data only through (y′k,x

′
k)
′ =

(y′k,y
′
k−1, · · · ,y′k−p)′, so we can set s(yT ) = (y′k,y

′
k−1, · · · ,y′k−p)′.

If the conditional distribution of YT given s(YT ) = s(yT ) is nondegenerate, we can

consider a frequentist experiment (repeated sampling of YT ) conditional on the sufficient

statistics set to the observed value. In this conditional experiment, we can view the con-

ditional identified set ĨSθ(φ, s(yT )) as the standard identified set in set-identified models

since it no longer depends on the data in the conditional experiment where s(yT ) is fixed.

This is the reason that we refer to ISθ(φ,y
T ) as the conditional identified set. In Section 4.3

below, we show the frequentist validity of the robust-Bayes credible region by establishing

the conditional coverage of the conditional identified set for an impulse response.

4.3 Frequentist coverage under a few narrative restrictions

In this section, we show that the robust Bayes credible regions attain asymptotically valid

frequentist coverage in the setting that the number of NR is small relative to the length of

the sampled periods in a sense that we make precise in the next assumption.

Assumption 4.1. (fixed-dimensional s(yT )): The conditional identified set under NR have

sufficient statistics s(yT ), as defined in Definition 4.1 (ii), and the dimension of s(yT ) does

not depend on T .

Let θ0 be the true structural parameters and φ0 = g(θ0) be the corresponding reduced-

form parameters. We view the sample YT being drawn from p(YT |φ0). Let p(YT |φ0, s) be
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the conditional distribution of sample YT given the sufficient statistics for the conditional

identified set s = s(YT ) at the reduced-form parameters set to the truth φ = φ0. We denote

by p(s|φ0) the distribution of the sufficient statistics s(YT ) at φ = φ0. The next assumption

assumes that in the conditional experiment given s(YT ), the sampling distribution for the

maximum likelihood estimator φ̂ ≡ arg maxφ p(Y
T |φ) centered at φ0 and the posterior for

φ centered at φ̂ asymptotically coincide.

Assumption 4.2. (Conditional Bernstein-von Mises property for φ): For p(s|φ0)-almost

every s and p(YT |φ0, s)-almost every sampling sequence YT , the posterior distribution for√
T (φ − φ̂) asymptotically coincides with the sampling distribution of

√
T (φ̂ − φ0) with

respect to p(YT |φ0, s), as T →∞, in the sense stated in Assumption 5 (i) in GK18.

This is a key assumption for establishing the asymptotic frequentist validity of the robust

credible region under NR. It holds, for instance, when s(yT ) corresponds to one or a few

observations in the whole sample, as we had in the toy example of Section 2.1. In this case, the

influence of s(yT ) vanishes in the conditional sampling distribution of
√
T (φ̂−φ0) as T →∞,

as the latter asymptotically agrees with the asymptotically normal sampling distribution for

the maximum likelihood estimator with the variance-covariance matrix given by the inverse

of the Fisher information matrix. By the well-known Bernstein-von Mises theorem for regular

parametric models, the posterior distribution for
√
T (φ− φ̂) asymptotically agrees with this

sampling distribution.

The last assumption we require is convexity and smoothness of the conditional identified

set, analogous to Assumption 5 (ii) of GK18 for standard partially identified models.

Assumption 4.3. (Almost-sure convexity and smoothness of the impulse response identi-

fied set): Let ĨSη(φ, s(YT )) be the conditional identified set for η = h(θ) with the suffi-

cient statistics s(YT ). For p(YT |φ0)-almost every YT , ĨSη(φ, s(yT )) is closed and convex,

ĨSη(φ, s(yT )) = [ ˜̀(φ, s(YT )), ũ(φ, s(YT ))], and its lower and upper bounds are differen-

tiable in φ at φ = φ0 with nonzero derivatives.

Propositions 4.1–4.3 below present primitive conditions for Assumption 4.3. Imposing

these three assumptions altogether, we obtain the following theorem.

Theorem 4.4. For γ ∈ (0, 1), let Ĉ∗α be the volume-minimizing robust credible region for η
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with credibility α,15 which satisfies

inf
π∈Π

θ|YT ,N(θ,YT )≥0s×1

π(Ĉ∗α) = πφ(ISη(φ,Y
T ) ⊂ Ĉ∗α|YT , N(θ,YT ) ≥ 0s×1) = α. (37)

Under Assumptions 4.1, 4.2, and 4.3, Ĉ∗α attains asymptotically valid coverage for the true

impulse response conditional on s(YT ).

lim inf
T→∞

PYT |s,φ(η0 ∈ Ĉ∗α|s(YT ),φ0) ≥ lim
T→∞

PYT |s,φ(ĨSη(φ0, s(YT )) ⊂ Ĉ∗α|s(YT ),φ0) = α.

(38)

Accordingly, Ĉ∗α attains an asymptotically valid coverage for η0 unconditionally,

lim inf
T→∞

PYT |φ(η0 ∈ Ĉ∗α|φ0) ≥ lim
T→∞

PYT |φ(ĨSη(φ0, s(YT )) ⊂ Ĉ∗α|φ0) = α. (39)

Proof. See Appendix B.

This theorem shows that the robust credible region of GK18 applied to the SVAR model

with NR attains asymptotically valid frequentist coverage for the true impulse response

as well as the conditional impulse response identified set. Even if the point-identification

condition of Proposition 3.1 holds for the impulse response, it is not obvious if the standard

Bayesian credible region can attain frequentist coverage. This is because the Bernstein-von

Mises theorem does not seem to hold for the impulse response due to the non-standard

features of the models with NR.

In what follows, we present sufficient conditions for convexity, continuity, and differen-

tiability (both in φ) of the conditional impulse response identified set under the assumption

that there is a fixed number of shock-sign restrictions constraining the first structural shock

only (possibly in multiple periods). The proofs are collected in Appendix B.

Proposition 4.1. Convexity. Let the parameter of interest be ηi,1,h, the impulse response of

the ith variable at the hth horizon to the first structural shock. Assume that there are shock-

sign restrictions on ε1,t for t = t1, . . . , tK, so N(φ,Q,U) = (Σ−1
tr ut1 , . . . ,Σ

−1
tr utK )′q1 ≥

0K×1. Then the set of values of ηi,1,h satisfying the shock-sign restrictions and sign normal-

isation, {ηi,1,h(φ,Q) = ci,h(φ)q1 : N(φ,Q,U) ≥ 0K×1, diag(Q′Σ−1
tr ) ≥ 0n×1,Q ∈ O(n)} is

15The volume-minimizing robust credible region Ĉ∗α is defined as a shortest interval among the connected
intervals Cα satisfying

PYT |s,φ(ĨSη(φ0, s(YT )) ⊂ Cα|s(YT ),φ0) ≥ α.

See Proposition 1 in GK18 for a procedure to compute the volume-minimizing credible region.
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convex for all i and h if there exists a unit-length vector q ∈ Rn satisfying[
(Σ−1

tr ut1 , . . . ,Σ
−1
tr utK )′

(Σ−1
tr e1,n)′

]
q ≥ 0(K+1)×1. (40)

Proposition 4.2. Continuity. Let the parameter of interest and restrictions be as in

Proposition 4.1, and assume that the conditions in the proposition are satisfied. If there

exists a unit-length vector q ∈ Rn such that, at φ = φ0,[
(Σ−1

tr ut1 , . . . ,Σ
−1
tr utK )′

(Σ−1
tr e1,n)′

]
q >> 0(K+1)×1, (41)

then u(φ,U) and l(φ,U) are continuous at φ = φ0 for all i and h.16

Proposition 4.3. Differentiability. Let the parameter of interest and restrictions be as

in Proposition 4.1, and assume that the conditions in the proposition are satisfied. If, at

φ = φ0, the set of solutions to the optimisation problem

max
q∈Sn−1

(
min

q∈Sn−1

)
c′i,h(φ)q s.t.

[
(Σ−1

tr ut1 , . . . ,Σ
−1
tr utK ), Σ−1

tr e1,n

]′
q ≥ 0(K+1)×1

(42)

is singleton, the optimised value u(φ,U) (l(φ,U)) is nonzero, and the number of binding

inequality restrictions at the optimum is at most n−1, then u(φ,U) (l(φ,U)) is almost-surely

differentiable at φ = φ0.

5 Numerical Algorithms for Posterior Inference

In this section, we describe algorithms to conduct posterior inference under NR using the

unconditional likelihood to construct the posterior. We first describe an algorithm that can

be used to conduct posterior inference under a uniform prior for Q|φ. We then describe

algorithms that can be used to conduct prior-robust Bayesian inference.

5.1 Single Prior

AR18 propose an algorithm for drawing from the uniform-normal-inverse-Wishart posterior

of θ given a set of traditional and NR. This is the posterior induced by a normal-inverse-

Wishart prior over φ and an unconditionally uniform prior over Q. As discussed above, the

16For a vector x = (x1, . . . , xm)′, x >> 0m×1 means that xi > 0 for all i = 1, . . . ,m.
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likelihood that they use to construct the posterior is conditional on the NR holding. The

algorithm proceeds by drawing φ from a normal-inverse-Wishart distribution and Q from a

uniform distribution over O(n), and checking whether the traditional and NR are satisfied. If

the restrictions are not satisfied, the joint draw is discarded and another draw is made. If the

restrictions are satisfied, the probability that the NR are satisfied at the drawn parameter

values (under the joint distribution of the restricted shocks) is approximated via Monte

Carlo simulation. Once the desired number of draws are obtained satisfying the restrictions,

the draws are resampled with replacement using as importance weights the inverse of the

probability that the NR are satisfied.

As discussed above, using the conditional likelihood to construct the posterior places

higher posterior probability on values of Q that yield a lower probability of the NR being

satisfied, so we advocate using the unconditional likelihood to construct the posterior. The

algorithm in AR18 essentially draws from the posterior under the unconditional likelihood

and then uses importance sampling to draw from the posterior given the conditional likeli-

hood. To draw from the uniform-normal-inverse-Wishart posterior using the unconditional

likelihood to construct the posterior, one therefore simply needs to omit the importance-

sampling step from this algorithm. Approximating the probability used to construct the

importance weights requires Monte Carlo integration, which can be computationally expen-

sive, particularly when the NR constrain the structural shocks in multiple periods. Omitting

the importance-sampling step can therefore greatly ease the computational burden of draw-

ing from the posterior.

By rejecting draws that do not satisfy the traditional restrictions and NR, the algorithm

described above places more weight on draws of the reduced-form parameters that are less

likely to satisfy the restrictions under the uniform distribution on Q. As discussed in Uhlig

(2017), one may instead prefer to use as a prior a distribution that is conditionally uniform

over Q|φ.17 Algorithm 1 below describes how to draw from the posterior of θ given an

arbitrary prior over φ and a conditionally uniform prior over Q|φ, using the unconditional

likelihood to construct the posterior.

Algorithm 1. Let N(φ,Q,U) ≥ 0s×1 be the set of narrative restrictions and let S(φ,Q) ≥
0s̃×1 be the set of traditional sign restrictions (excluding the sign normalisation).

� Step 1: Specify a prior for φ, πφ, and obtain the posterior πφ|YT .

17Based on the results in Arias, Rubio-Ramı́rez and Waggoner (2018), AR18 argue that their algo-
rithm draws from a normal-generalised-normal posterior distribution over the SVAR’s structural parameters
(A0,A+) induced by a conjugate normal-generalised-normal prior, conditional on the NR. Practitioners
who wish to draw from this posterior under the unconditional likelihood could simply omit the importance
sampling step from the algorithm in AR18.
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� Step 2: Draw φ from πφ|YT , compute the reduced-form VAR innovations ut = yt −
Bxt for t = t1, . . . , tK, and attempt to draw Q from the uniform distribution over

Q̃(φ,U|N,S) using the subroutine below.

– Step 2.1: Draw an n × n matrix of independent standard normal random vari-

ables, Z, and let Z = Q̃R be the QR decomposition of Z.18

– Step 2.2: Define

Q =

[
sign((Σ−1

tr e1,n)′q̃1)
q̃1

‖q̃1‖
, . . . , sign((Σ−1

tr en,n)′q̃n)
q̃n
‖q̃n‖

]
,

where q̃j is the jth column of Q̃.

– Step 2.3: Check whether Q satisfies N(φ,Q,U) ≥ 0s×1 and S(φ,Q) ≥ 0s̃×1. If

so, retain Q. Otherwise, repeat Steps 2.1 and 2.2 (up to a maximum of L times)

until Q is obtained satisfying S(φ,Q,U) ≥ 0s×1. If no draws of Q satisfy the

restrictions, approximate Q̃(φ,U|N,S) as being empty and return to Step 2.

The algorithm relies on the fact that if Q|φ is uniformly distributed over Q(φ|S), then

Q|φ,YT is also uniformly distributed over Q̃(φ,U|N,S). The single prior for Q|φ induces a

single posterior for θ and thus a single posterior for any function of the structural parameters.

One can obtain draws from the posterior of such an object by transforming the draws of θ.

When the restrictions substantially truncate Q̃(φ,U|N,S), it may take very many draws

of Q from O(n) to obtain a single draw satisfying the restrictions. Amir-Ahmadi and

Drautzburg (2019) introduce algorithms for inference in set-identified SVARs that may be

useful in this case. Specifically, they propose checking whether the identified set is empty by

solving a simple linear program; we discuss this approach below. They also suggest drawing

Q directly from the space of orthonormal matrices satisfying the sign restrictions by using a

Gibbs sampler, which avoids rejection sampling. However, these approaches are applicable

only when there are linear inequality restrictions on Q, which will not be the case when

there are restrictions on the historical decomposition.

5.2 Multiple priors

GK18 propose numerical algorithms for conducting robust Bayesian inference in SVARs

identified using traditional sign and zero restrictions. Their Algorithm 1 uses a numerical

18This is the algorithm used by Rubio-Ramı́rez, Waggoner and Zha (2010) to draw from the uniform
distribution over O(n), except that we do not normalise the diagonal elements of R to be positive. This is
because we impose a sign normalisation based on the diagonal elements of A0 = Q′Σ−1tr in Step 2.2.
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optimisation routine to obtain the lower and upper bounds of the identified set at each draw

of φ. Obtaining the bounds via numerical optimisation is not generally applicable under the

class of NR considered in AR18, since the constraints on the historical decomposition are not

differentiable everywhere in Q. We therefore adapt Algorithm 2 of GK18, which approxi-

mates the bounds of the identified set at each draw of φ using Monte Carlo simulation. After

describing the algorithm, we discuss alternative algorithms that are more computationally

efficient in some scenarios but are less-widely applicable.

Algorithm 2. Let N(φ,Q,U) ≥ 0s×1 be the set of narrative restrictions and let S(φ,Q) ≥
0s̃×1 be the set of traditional sign restrictions (excluding the sign normalisation). Assume

the object of interest is ηi,j∗,h = ci,h(φ)′qj∗.

� Step 1: Specify a prior for φ, πφ, and obtain the posterior πφ|YT .

� Step 2: Draw φ from πφ|YT , compute the reduced-form VAR innovations ut = yt−Bxt

for t = t1, . . . , tK, and check whether Q̃(φ,U|N,S) is empty using Steps 2.1–2.3 of

Algorithm 1. If Q̃(φ,U|N,S) is empty, repeat Step 2. Otherwise, proceed to Step 3.

� Step 3: Repeat Steps 2.1–2.3 of Algorithm 1 until K draws of Q are obtained. Let

{Qk, k = 1, ..., K} be the K draws of Q that satisfy the restrictions and let qj∗,k be the

j∗th column of Qk. Approximate [l(φ,U), u(φ,U)] by [minl ci,h(φ)′qj∗,l, maxl ci,h(φ)′qj∗,l].

� Step 4: Repeat Steps 2–3 M times to obtain [l(φm,Um), u(φm,Um)] for m = 1, ...,M .

Approximate the set of posterior means by the sample averages of l(φm,Um) and

u(φm,Um).

� Step 5: To obtain an approximation of the smallest robust credible region with credi-

bility α ∈ (0, 1), define d(η,φ,U) = max{|η− l(φ,U)|, |η− u(φ,U)|} and let ẑα(η) be

the sample α-th quantile of {d(η,φm,Um),m = 1, ...,M}. An approximated smallest

robust credible interval for ηi,j∗,h is an interval centered at arg minη ẑα(η) with radius

minη ẑα(η).

5.2.1 Remarks

Algorithm 2 approximates [l(φ,U), u(φ,U)] at each draw of φ via Monte Carlo simulation.

The approximated set will lie strictly within the true set, but will converge to the true set

as K goes to infinity. The algorithm may be computationally demanding when there are

sign restrictions that substantially truncate Q̃(φ,U|N,S), because many draws of Q from

O(n) may be rejected at each draw of φ. However, the same draws of Q can be used to

compute the posteriors of l(φ,U) and u(φ,U) for different objects of interest, which cuts
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down on computation time. For example, the same draws of Q can be used to compute

the impulse responses of all variables to all shocks at all horizons of interest. They can

also be used to compute other parameters by replacing ηi,j∗,h with some other function. For

example, ηi,j∗,h can be replaced with the forecast error variance decomposition or an element

of A0.19 η may also be a function of the data, so one can use the algorithm to conduct robust

Bayesian inference about the historical decomposition or the structural shocks themselves

in particular periods. Step 3 is parallelizable, so large reductions in computing time are

possible by distributing computation across multiple processors. Other algorithms may be

computationally more efficient than Algorithm 2 in particular cases. We discuss these below.

Other algorithms. Assume that the object of interest is an impulse response to the first

structural shock. The upper bound of the set of admissible values for the horizon-h impulse

response of the ith variable to this shock given φ and U is the value function associated

with the optimisation problem

u(φ,U) = max
Q∈Q̃(φ,U|N,S)

c′i,h(φ)q1. (43)

l(φ,U) is obtained by minimising the same objective function subject to the same con-

straints. When N(φ,Q,U) and S(φ,Q) only constrain q1, applying the change of variables

x = Σtrq1 yields the optimisation problem in Gafarov, Meier and Montiel-Olea (2018) with

additional inequality restrictions that are functions of U.20 Given a set of active inequality

restrictions, Gafarov et al. (2018) provide an analytical expression for the value function and

solution of this optimisation problem. To find the bounds of the identified set, they compute

these quantities for every possible combination of active restrictions and check which pair

solves the optimisation problem. Since the bounds are computed analytically at each set

of active restrictions, this algorithm is computationally inexpensive as long as there is not

a very large number of inequality restrictions. However, if N(φ,Q,U) contains restrictions

on the historical decomposition, all columns of Q are (nonlinearly) constrained and the an-

alytical results are longer applicable. Similarly, the approach is not applicable when there

are shock-sign or shock-rank restrictions on different structural shocks, or traditional sign

restrictions on other columns of Q. This approach may also be prohibitively slow when there

are shock-rank restrictions, since the number of sign restrictions may be of the same order

19Impulse responses to a unit shock – rather than a standard-deviation shock – can be computed as in
Algorithm 3 of Giacomini, Kitagawa and Read (2019).

20In their notation, the jth structural shock at time t is

e′j,n(B−1ut) = (B−1ut)
′ej,n = u′t(B

−1Σ)−1ej,n = u′tΣ
−1Bj ,

where Bj = Bej,n is the jth column of B (A−10 in our notation) and we have used that B′ = B−1Σ.
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as the sample size. At most n− 1 inequality constraints may be active at an optimum of the

program in (43), so the number of combinations of active constraints that must be checked

when there are s constraints is
∑n−1

k=0

(
s
k

)
. For example, in the empirical application below,

when we consider a shock-rank restriction alongside traditional sign restrictions, there are

1.7515× 1014 possible combinations of active restrictions to consider.

As mentioned above, Amir-Ahmadi and Drautzburg (2019) propose an algorithm to

determine whether the set of admissible values for Q is nonempty without recourse to random

sampling from O(n). This algorithm can be more accurate and efficient than the simulation-

based approach used in Algorithms 1 and 2, but it is applicable only when the columns of Q

are linearly restricted by sign restrictions, which is not the case when there are restrictions

on the historical decomposition. However, practitioners may not always wish to impose

restrictions on the historical decomposition. We therefore describe an algorithm that can

be used to conduct robust Bayesian inference when there are shock-rank, shock-sign and/or

traditional sign restrictions that restrict only the first column of Q, and which makes use of

the approach in Amir-Ahmadi and Drautzburg (2019) to determine whether Q̃1(φ,U|N,S)

is nonempty.

Algorithm 3. Let N(φ,U)q1 ≥ 0s×1 be the set of narrative restrictions and let S(φ)q1 ≥
0(s̃+1)×1 be the set of traditional sign restrictions including the sign normalisation. Also,

assume the object of interest is ηi,1,h = ci,h(φ)′q1. Replace Steps 2 and 3 of Algorithm 2 with

the following.

� Step 2: Draw φ from πφ|YT , compute the reduced-form VAR innovations ut = yt−Bxt

for t = t1, . . . , tK, and check whether Q̃1(φ,U|N,S) is empty by using the following

subroutine.

– 2.1 Solve for the Chebychev center {R, q̃} of the set {q̃ : (N(φ,U)′, S(φ)′)′q̃ ≥
0(s+s̃+1)×1, |q̃i| ≤ 1, i = 1, . . . , n}. If R > 0, Q̃1(φ,U|N,S) is nonempty, so

proceed to Step 3. Otherwise, repeat Step 2.

� Step 3: Compute l(φ,U) by solving the following constrained optimisation problem

with initial value q0 = q̃/‖q̃‖:

l(φ) = min
q
ci,h(φ)′q s.t. N(φ,U)q1 ≥ 0s×1, S(φ)q1 ≥ 0(s̃+1)×1,q

′q = 1. (44)

Similarly, obtain u(φ,U) by maximising ci,h(φ)′q subject to the same set of constraints.

Step 2.1 requires solving for the Chebychev center of the set satisfying the narrative and

traditional sign restrictions. The Chebychev center q̃ is the center of the largest ball with
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radius R that can be inscribed within the set {q̃ : (N(φ,U)′, S(φ)′)′q̃ ≥ 0(s+s̃+1)×1, |q̃i| ≤
1, i = 1, . . . , n}, which is the intersection of the halfspaces generated by the inequality

restrictions and the unit n-cube.21 Letting Z′k be the kth row of (N(φ,U)′, S(φ)′)′, the

Chebychev center and radius can be obtained as the solution to the following problem (see,

for example, Boyd and Vandenberghe (2004)):

max
{R≥0,q̃}

R (45)

subject to

Z′kq̃ +R‖Zk‖ ≥ 0, k = 1, . . . , s+ s̃+ 1 (46)

q̃i +R ≤ 1, i = 1, . . . , n. (47)

q̃i −R ≥ −1, i = 1, . . . , n. (48)

This is a linear program, which can be solved efficiently. If R > 0, then Q̃1(φ,U|N,S) is

nonempty. If q̃ is a Chebychev center with R > 0, then q̃ satisfies the sign restrictions

and ‖q̃‖ > 0. q0
1 = q̃/‖q̃‖ then has unit norm and satisfies the sign restrictions, so we can

use it as an initial value in the optimisation problem of Step 3. In practice, we solve the

optimisation problem in Step 3 using an interior-point algorithm within Matlab’s ‘fmincon’

optimiser. Algorithm 3 can also be used to conduct robust Bayesian inference about other

objects by replacing the objective function in Step 3.

6 Empirical Application: The Dynamic Effects of a

Monetary Policy Shock

AR18 estimate the effects of monetary policy shocks on the US economy using a combination

of sign restrictions on impulse responses and NR. The reduced-form VAR is the same as that

used in Christiano, Eichenbaum and Evans (1999) and Uhlig (2005). The model’s endogenous

variables are real GDP, the GDP deflator, a commodity price index, total reserves, non-

borrowed reserves and the federal funds rate. The data are monthly and run from January

1965 to November 2007. The VAR includes 12 lags and we include a constant.

As NR, AR18 impose that the monetary policy shock in October 1979 was positive and

that it was the overwhelming contributor to the unexpected change in the federal funds

rate in that month (a Type B restriction on the historical decomposition). This was the

21The restriction that q̃ lies within the unit n-cube ensures that the problem is well-defined.
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month in which the Federal Reserve markedly and unexpectedly increased the federal funds

rate following the appointment of Paul Volcker as chairman of the Federal Reserve, and is

widely considered to be an example of a positive monetary policy shock. The traditional

sign restrictions considered in Uhlig (2005) are also imposed. Specifically, the response of

the federal funds rate is restricted to be non-negative for h = 0, 1, . . . , 5 and the responses

of the GDP deflator, the commodity price index and nonborrowed reserves are restricted to

be nonpositive for h = 0, 1, . . . , 5.

We assume a Jeffreys’ (improper) prior over the reduced-form parameters, πφ = πB,Σ ∝
|Σ|−n+1

2 . The posterior for the reduced-form parameters, πφ|YT , is then a normal-inverse-

Wishart distribution, from which it is straightforward to obtain independent draws (for

example, see Del Negro and Schorfheide (2011)). We obtain 1,000 draws from the posterior

of φ such that the VAR is stable and Q̃(φ,U|N,S) is non-empty. We use Algorithm 2

with K = 10, 000 draws of Q at each draw of φ to approximate l(φ,U) and u(φ,U).

If we cannot obtain a draw of Q satisfying the restrictions after 100,000 draws of Q, we

approximate Q̃(φ,U|N,S) as being empty at that draw of φ.

We first consider the effect of using the conditional likelihood rather than the uncondi-

tional likelihood on posterior inference under a conditionally uniform prior for Q|φ. The

posterior corresponding to the unconditional likelihood is obtained using Algorithm 1, while

the posterior corresponding to the conditional likelihood is obtained by resampling the draws

obtained using Algorithm 1, using as importance weights the probability that the NR hold

at each draw of θ. This probability is approximated by Monte Carlo simulation with 10,000

replications.22 For brevity, we report only the impulse responses of the federal funds rate

and real GDP to a positive standard-deviation monetary policy shock (Figure 5). In this

application, the posterior distributions of the two sets of impulse responses are quite similar

regardless of whether the conditional or unconditional likelihood is used to construct the

posterior.23

We then explore the sensitivity of posterior inference to the choice of prior for Q|φ
when the unconditional likelihood is used to construct the posterior. Figure 6 plots the

full set of impulse responses obtained using both the conditionally uniform prior and the

robust Bayesian approach. The results suggest that posterior inference about the effect of a

monetary policy shock can be sensitive to the choice of prior for Q|φ. For example, under

22The importance weights imply that the effective sample size is 866 (see Arias, Rubio-Ramı́rez and
Waggoner (2018)).

23The results are not directly comparable to those presented in Figure 6 of AR18. First, we present
responses to a standard-deviation shock, whereas AR18 describe their responses as being to a 25 basis point
shock (although, from close inspection of their Figure 6, it is evident that this normalisation is not imposed
correctly, because the impact response of the federal funds rate fans out around zero). Second, we use a
prior for Q that is conditionally uniform given φ, whereas AR18 use a prior that is unconditionally uniform.
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Figure 5: Impulse Responses to a Monetary Policy Shock – Conditional vs
Unconditional Likelihood
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the conditionally uniform prior for Q|φ, the 68 per cent highest posterior density credible

intervals for the response of real GDP exclude zero at horizons greater than a year or so,

whereas the 68 per cent robust credible intervals include zero at all horizons. Under the

single prior, the posterior probability that the shock results in output falling after two years

is 95 per cent. In contrast, the posterior lower probability – the smallest probability over

the class of posteriors generated by the class of priors – that output falls after two years is

only 55 per cent. The choice of single prior shrinks the credible intervals by about 60 per

cent on average across the variables and horizons considered.

AR18 also consider an alternative set of identifying restrictions. Specifically, they impose

that the monetary policy shock was: positive in April 1974, October 1979, December 1988

and February 1994; negative in December 1990, October 1998, April 2001 and November

2002; and the most important contributor to the observed unexpected change in the federal

funds rate in these months. The choice of these dates is based on a synthesis of information

from different sources, including the chronology of monetary policy actions from Romer and

Romer (1989), an updated series of the monetary policy shocks constructed using Greenbook

forecasts in Romer and Romer (2004), the high-frequency monetary policy surprises from

Gürkaynak, Sack and Swanson (2005), and minutes from Federal Open Markets Committee

meetings. Building on this chronology, we impose a novel shock-rank restriction. Specifically,

we impose that the monetary policy shock in October 1979 was the largest positive realisation

of the monetary policy shock in the sample period. This restriction is motivated by the fact

that the change in the federal funds rate in October 1979 was more positive than the change

in the federal funds rate in the other periods identified by AR18 as containing notable
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Figure 6: Impulse Responses to a Monetary Policy Shock – Single Prior vs
Robust
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wise) highest posterior density intervals under the uniform prior for Q|φ; ver-
tical bars are sets of posterior means and solid lines are 68 per cent (point-
wise) robust credible regions obtained using Algorithm 2 with 10,000 draws from
Q̃(φ,U|N,S); results are based on 1,000 draws from the posterior of φ with
nonempty Q̃(φ,U|N,S); impulse responses are to a standard-deviation shock.

monetary policy shocks (Table 1).24

Table 1: Monthly Change in Federal Funds Rate (ppt)

Oct 79 Apr 74 Dec 88 Feb 94 Dec 90 Oct 98 Apr 01 Nov 02
2.34 1.16 0.41 0.2 –0.5 –0.44 –0.51 –0.41

Source: FRED

Figure 7 plots the estimates under these restrictions. Since the shock-rank restriction and

the traditional sign restrictions constrain one column of Q only and generate a large number

of inequality constraints, we use Algorithm 3 to obtain the results. For comparison, we also

plot the results under the restrictions on the sign of the monetary policy shock and the

historical decomposition in October 1979. The shock-rank restriction substantially shrinks

the set of posterior means and robust credible regions relative to those obtained under the

restriction on the historical decomposition. The posterior lower probability that output falls

two years after the shock is 73 per cent, compared with 55 per cent under the restriction on

24The posterior mean of the reduced-form VAR innovation to the federal funds rate in October 1979 is
also more positive than in the other periods.
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the historical decomposition.25

Figure 7: Impulse Responses to a Monetary Policy Shock – Shock-rank
Restriction
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terior of φ with nonempty Q̃(φ,U|N,S); results under shock-rank restriction are
obtained using Algorithm 3; results under restriction on the historical decomposi-
tion are obtained using Algorithm 2 with 10,000 draws from Q̃(φ,U|N,S); impulse
responses are to a standard-deviation shock.

7 Conclusion

Restricting structural shocks to be consistent with the historical narrative offers a potentially

useful approach to disciplining structural vector autoregressions, but raises new issues related

to identification and inference. We show that these restrictions generate a set-valued map-

ping from the model’s reduced-form parameters to its structural parameters that depends

on the realisation of the data entering the restrictions independently of the reduced-form pa-

rameters. Conditioning on the restrictions holding may result in the posterior distribution

placing more weight on parameters that yield a lower ex ante probability that the restrictions

are satisfied. We therefore advocate using the unconditional likelihood when constructing the

posterior. However, this likelihood will possess flat regions in any particular sample, which

implies that the posterior will be proportional to the prior in some region of the parameter

space. Posterior inference may therefore be sensitive to the choice of prior. To address this,

25In general, Q̃(φ,U|N,S) may be empty at particular values of φ. The proportion of draws of φ where
Q̃(φ,U|N,S) is empty can therefore be used to assess the plausibility of the restrictions (see GK18). In this
application, under the restriction on the historical decomposition, Q̃(φ,U|N,S) is nonempty at every draw
of φ, so the posterior plausibility of the restrictions is one. In contrast, under the shock-rank restriction, the
posterior plausibility of the restrictions is only 17 per cent. The results in Figure 7 are largely unchanged
when based on draws of φ satisfying both sets of restrictions.
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we provide tools to assess posterior sensitivity to the choice of conditional prior over the

orthonormal matrix. We provide conditions under which these tools will have a valid fre-

quentist interpretation. In particular, given a fixed number of NR, these tools provide valid

frequentist inference about the identified set under a refinement of the concept of identified

set that allows the mapping from reduced-form to structural parameters to depend on the

realisation of the data independently of the reduced-form parameters.

38



References

Amir-Ahmadi, P. and T. Drautzburg (2019). Identification And Inference With Ranking

Restrictions. Unpublished manuscript.
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8 Appendix A: Bivariate Example

This section presents analytical expressions for the set of values of θ consistent with the NR

in the bivariate example of Section 2. When determining the set of values of θ consistent

with the restrictions, there are four main cases to consider, which differ in terms of the signs

of σ21 and σ21y1k − σ11y2k. Within each of these cases, the set of values of θ consistent with

the restrictions also depends on the sign of y1k.
26

1. σ21 > 0 and σ21y1k − σ11y2k > 0

(a) y1k > 0:

θ ∈

[
− π + arctan

(
max

{
σ22

σ21

,
σ22y1k

σ21y1k − σ11y2k

})
,

arctan

(
min

{
σ22

σ21

,
σ22y1k

σ21y1k − σ11y2k

})]
. (49)

(b) y1k < 0:

θ ∈
[
−π + arctan

(
σ22

σ21

)
, arctan

(
σ22y1k

σ21y1k − σ11y2k

)]
. (50)

2. σ21 > 0 and σ21y1k − σ11y2k < 0

(a) y1k > 0:

θ ∈
[
arctan

(
σ22y1k

σ21y1k − σ11y2k

)
, arctan

(
σ22

σ21

)]
. (51)

(b) y1k < 0:

θ ∈


[
arctan

(
σ22y1k

σ21y1k−σ11y2k

)
, arctan

(
σ22
σ21

)]
if σ22

σ21
> σ22y1k

σ21y1k−σ11y2k[
−π + arctan

(
σ22
σ21

)
,−π + arctan

(
σ22y1k

σ21y1k−σ11y2k

)]
otherwise.

(52)

3. σ21 < 0 and σ21y1k − σ11y2k > 0

(a) y1k > 0:

θ ∈
[
arctan

(
σ22

σ21

)
, arctan

(
σ22y1k

σ21y1k − σ11y2k

)]
. (53)

26It may be useful to recall that arctan(x) ∈ (−π/2, π/2) and − arctan(x) = arctan(−x).
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(b) y1k < 0:

θ ∈


[
arctan

(
σ22
σ21

)
, arctan

(
σ22y1k

σ21y1k−σ11y2k

)]
if σ22

σ21
< σ22y1k

σ21y1k−σ11y2k[
π + arctan

(
σ22y1k

σ21y1k−σ11y2k

)
, π + arctan

(
σ22
σ21

)]
otherwise.

(54)

4. σ21 < 0 and σ21y1k − σ11y2k < 0

(a) y1k > 0:

θ ∈

[
arctan

(
max

{
σ22

σ21

,
σ22y1k

σ21y1k − σ11y2k

})
,

π + arctan

(
min

{
σ22

σ21

,
σ22y1k

σ21y1k − σ11y2k

})]
. (55)

(b) y1k < 0:

θ ∈
[
arctan

(
σ22y1k

σ21y1k − σ11y2k

)
, π + arctan

(
σ22

σ21

)]
. (56)

Under the restrictions that the first structural shock is positive in period k and was

the most important (or overwhelming) contributor to the change in the first variable, θ is

restricted to lie in the set

θ ∈
{
θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≥ 0, σ22y1k cos θ ≥ (σ21y1k − σ11y2k) sin θ,

|σ22y1k cos2 θ + (σ11y2k − σ21y1k) cos θ sin θ| ≥ |σ22y1k sin2 θ − (σ11y2k + σ21y1k) cos θ sin θ|
}

∪
{
θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≤ 0, σ22y1k cos θ ≥ (σ21y1k − σ11y2k) sin θ,

|σ22y1k cos2 θ + (σ11y2k − σ21y1k) cos θ sin θ| ≥ |σ22y1k sin2 θ − (σ11y2k + σ21y1k) cos θ sin θ|
}
.

(57)

As in the case of the shock-sign restriction, this set also depends on the data yk independently

of the reduced-form parameters.
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9 Appendix B: Omitted Proofs

Proof of Proposition 3.1

Proof. H(φ,Q) can be written as

H(φ,Q) =

∫
YT

f 1/2(YT |φ)f 1/2(YT |φ0) ·DN(φ,Q,YT )DN(φ0,Q0,Y
T )dYT

+

∫
YT

f 1/2(YT |φ)f 1/2(YT |φ0) · (1−DN(φ,Q,YT ))(1−DN(φ0,Q0,Y
T ))dYT .

Note that the likelihood for the reduced-form parameters f(YT |φ) point-identifies φ, so

f(·|φ) = f(·|φ0) holds only at φ = φ0. Hence, we set φ = φ0 and consider H(φ0,Q),

H(φ0,Q) =

∫
{YT :DN (φ0,Q,YT )=DN (φ0,Q0,YT )}

f(YT |φ0)dYT .

Hence, H(φ0,Q) = 1 if and only if DN(φ0,Q,Y
T ) = DN(φ0,Q0,Y

T ) holds f(YT |φ0)-a.s.

In terms of the reduced-form residuals entering the narrative restrictions, the latter condition

is equivalent to {U : N(φ0,Q,U) ≥ 0s×1} = {U : N(φ0,Q0,U) ≥ 0s×1} up to f(YT |φ0)-

null set. Hence, Q∗ defined in the proposition collects observationally equivalent values of

Q at φ = φ0 in terms of the unconditional likelihood.

Next, consider the conditional likelihood and consider

Hc(φ0,Q) =
1

r1/2(φ,Q)r1/2(φ0,Q0)

∫
YT

f(YT |φ0) ·DN(φ,Q,YT )DN(φ0,Q0,Y
T )dYT

=
EYT |φ0

[
DN(φ0,Q,Y

T )DN(φ0,Q0,Y
T )
]

r1/2(φ,Q)r1/2(φ0,Q0)

≤ 1,

where the inequality follows by the Cauchy-Schwartz inequality, and it holds with equality

if and only if DN(φ0,Q,Y
T ) = DN(φ0,Q0,Y

T ) holds f(YT |φ0)-a.s. Hence, by repeating

the argument for the unconditional likelihood case, we conclude that Q∗ consists of obser-

vationally equivalent values of Q at φ = φ0 in terms of the conditional likelihood.

Proof of Theorem 4.4. Since θ0 satisfies the imposed narrative restrictions N(θ0,y
T ) ≥ 0

and the other sign restrictions if any imposed, η0 ∈ ĨSη(φ0, s(yT )) holds for any yT . Hence,

for all T ,

PYT |s,φ(η0 ∈ Ĉ∗α|s(YT ),φ0) ≥ PYT |φ(ĨSη(φ0, s(YT )) ⊂ Ĉ∗α|s(YT ),φ0). (58)
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Hence, to prove the claim, it suffices to focus on the asymptotic behavior of the coverage

probability for the conditional identified set shown in the right-hand side.

Under Assumption 4.2 and 4.3, the asymptotically correct coverage for the conditional

identified set can be obtained by applying Proposition 2 in GK18.

Proof of Proposition 4.1. If there exists a unit-length vector q satisfying the inequality

in (40), it must lie within the intersection of the K halfspaces defined by the inequalities

(Σ−1
tr utk)′q ≥ 0, k = 1, . . . , K, the halfspace defined by the sign normalisation, (Σ−1

tr e1,n)′q ≥
0, and the unit sphere in Rn. The intersection of these K + 1 halfspaces and the unit sphere

is a path-connected set. Since ηi,1,h(φ,Q) is a continuous function of q1, the set of values

of ηi,1,h satisfying the restrictions is an interval and is thus convex, because the set of a

continuous function with a path-connected domain is always an interval.

Proof of Proposition 4.2. After noting that U is (implicitly) continuous in φ, continuity

of u(φ,U) and l(φ,U) follows by the same logic as in the proof of Proposition 4 of GK18.

We omit the detail for brevity.

Proof of Proposition 4.3. One-to-one differentiable reparameterization of the optimisation

problem in Equation 42 using x = Σtrq yields the optimisation problem in Equation (2.5)

of Gafarov et al. (2018) with a set of inequality restrictions that are now a function of

the data through U. Noting that U is (implicitly) differentiable in φ, differentiability of

u(φ,U) at φ = φ0 follows from their Theorem 2 under the assumptions that, at φ = φ0,

the set of solutions to the optimisation problem is singleton, the optimized value u(φ,U)

is nonzero, and the number of binding sign restrictions at the optimum is at most n −
1. Differentiability of l(φ,U) follows similarly. Note that Theorem 2 of Gafarov et al.

(2018) additionally requires that the column vectors of
[
(Σ−1

tr ut1 , . . . ,Σ
−1
tr utK ), Σ−1

tr e1,n

]
are linearly independent, but this occurs almost-surely under the probability law for U.
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