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Abstract

While averaging unrestricted with restricted estimators is known

to reduce estimation risk, it is an open question whether this reduc-

tion can in turn improve inference. To analyze this question, we

construct confidence regions centered at James-Stein averaging es-

timators in a linear regression model. We show the validity of the

regions allowing the number of restrictions on the parameters of in-

terest to increase proportionally with the sample size. When used

for hypothesis testing, the recentered confidence regions enable a

power enhancement compared to the standard F -test.

1 Introduction

Averaging unrestricted with restricted estimators has been shown to reduce

estimation risk for least squares estimators (Hansen, 2014; Liu and Kuo,

2016), two-stage least squares estimators (Hansen, 2017), and for GMM

estimators (Cheng et al., 2019). With averaging weights of the form sug-

gested by Stein (1956) and James and Stein (1961), averaging estimators

are shown by Hansen (2016) to achieve a local minimax efficiency bound

when the number of restrictions on the parameters of interest is large.

These favorable risk properties raise the question whether averaging

can also be used to improve inference. To answer this question, we develop
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joint confidence regions centered at James-Stein averaging estimators in a

homoskedastic linear regression model. Given the known effectiveness of

averaging when the number of restrictions is large, we provide asymptotic

results allowing the number of restrictions to increase, possibly proportion-

ally, with the sample size.

When used for joint hypothesis testing, we find that suitable restric-

tions can enhance power compared to the usual F -test. For example, sup-

pose we test a high-dimensional parameter vector which only has a single

nonzero element. A t-test on the nonzero element can pick up alternatives

of O(n−1/2), where n denotes the sample size. However, the standard F -

test has trivial power against such alternatives due to the large number of

parameters under the test. If we average with a restricted estimator that

correctly identifies the location of the nonzero element, we find that the

recentered confidence regions restore asymptotic power to that of the t-test

on the nonzero element.

Technically, the proposed confidence regions are based on the observa-

tion by Stein (1981) that the difference between the mean squared error

of the averaging estimator and an unbiased risk estimate satisfies a cen-

tral limit theorem in the number of parameters of interest. Beran (1995)

formalizes this in a set-up where a normally distributed vector is averaged

with a fixed vector.

We extend the results by Beran (1995) to a linear regression context by

deriving the limiting distribution of the scaled difference between the mean

squared error of the averaging estimator and a suitable risk estimate. This

extension requires a joint asymptotic limit theory in the sample size and

the number of restrictions that are imposed on the parameters of interest.

To facilitate this analysis, we turn to the many-instrument literature and

adapt a central limit theorem by Chao et al. (2012).

We numerically analyze the confidence regions in a setting where a

researcher has a primary variable of interest in mind, and performs a joint

test including a number of secondary variables that are expected to have

small effects. The coverage rate of the developed confidence regions is

close to nominal, both when the number of restrictions is small and large

relative to the sample size. Conform the theory, we observe substantial

power improvements over a standard F -test, especially when the number
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of parameters under the test increases.

Related literature Recentered confidence regions for multiple param-

eters have been discussed for the case where the restricted estimator is a

fixed vector. Casella and Hwang (2012) provide an overview of the litera-

ture on recentered confidence regions. If the same radius is used as for the

standard confidence region, Casella and Hwang (1982) prove that recen-

tering increases the coverage rate under known variance, and Hwang and

Ullah (1994) for the unknown variance case. Confidence sets with reduced

volume are developed for example by Casella and Hwang (1983) and Sam-

worth (2005). In our numerical evaluation, we find these confidence regions

to be conservative, especially when the number of parameters increases.

Confidence intervals for individual parameters after model averaging

are proposed by Hjort and Claeskens (2003). Based on this suggestion,

Liu (2015) develops confidence intervals for the Mallows model averaging

estimator of Hansen (2007) and the jackknife model averaging estimator of

Hansen and Racine (2012). Simulation-based approaches are considered by

Claeskens and Hjort (2008), DiTraglia (2016) and Zhang and Liu (2019).

Leeb and Kabaila (2017) show that for one-dimensional intervals, length

reductions do not occur uniformly over the parameter space.

Organization This paper is structured as follows. Section 2 introduces

the model, defines the averaging estimator and the construction of the

confidence regions. The theoretical validity of the confidence regions is

discussed in Section 3. Section 4 provides numerical evidence for the cov-

erage rate and power properties of associated hypothesis tests. Section 5

concludes.

2 Averaging estimators and confidence re-

gions

Consider the homoskedastic linear regression model

yi = x′i,kθk + εi, i = 1, . . . , n, (1)
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where xi,k ∈ Rk×1. We define yn = (y1, . . . , yn)′, Xn,k = (x1,k, . . . ,xn,k)
′

and εn = (ε1, . . . , εn)′. Throughout, we subscript vectors and matrices by

their respective dimensions.

The goal of the paper is to construct a confidence region for the param-

eter vector of interest βp = G′k,pθk, where Gk,p ∈ Rk×p and p ≤ k. The

leading case is where Gk,p selects a subset of parameters of interest from

θk. We also define a set of restrictions on the parameters of the model by

R′k,rθk = cr, Rk,r ∈ Rk×r. (2)

The number of restrictions equals rank(Rk,r) = r. We assume that these

restrictions are imposed directly on the parameters of interest, in the sense

that

Rk,r = Gk,pBp,r, r ≤ p. (3)

2.1 Estimators

The averaging estimator for βp is a linear combination of an unrestricted

estimator β̂p and a restricted estimator β̃p,

β̂
a

p = ω̂β̃p + (1− ω̂)β̂p. (4)

To obtain β̂p and β̃p, we first estimate θk without and with imposing (2),

θ̂k = (X ′n,kXn,k)
−1X ′n,kyn,

θ̃k = θ̂k − Σ̂θ,kRk,r(R
′
k,rΣ̂θ,kRk,r)

−1(R′k,rθ̂k − cr),
(5)

where,

Σ̂θ,k = σ̂2
(
n−1X ′n,kXn,k

)−1
,

σ̂2 =
1

n− k
y′nMXn,k

yn, MXn,k
= In −Xn,k(X

′
n,kXn,k)

−1X ′n,k.
(6)

We then have the following estimators for the parameters of interest βp,

β̂p = G′k,pθ̂k, β̃p = G′k,pθ̃k. (7)
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We will later see that for hypothesis testing it can be beneficial to add

a fixed vector to θ̃k. Since the vector is fixed, this can be done without

affecting our results.

We consider averaging weights ω̂ in (4) closely related to the shrinkage

factor of James and Stein (1961). They can be expressed in terms of the

standard F -statistic as

ω̂ =
r − 2

r

1

F̂
, F̂ =

n(β̂p − β̃p)′Σ̂
−1
β,p(β̂p − β̃p)
r

, Σ̂β,p = σ̂2G′k,pΣ̂θ,kGk,p.

(8)

The inverse F -statistic emphasizes that the weight on the restricted esti-

mator is large when there is no clear evidence to reject the restrictions.

The weights aim to minimize estimation risk ρ(β̄p,βp), defined as

ρ(β̄p,βp) = E[`(β̄p,βp)], `(β̄p,βp) = n(β̄p − βp)′Σ̂
−1
β,p(β̄p − βp). (9)

Hansen (2016) shows that the averaging estimator (4) with weights (8) is

locally asymptotically minimax efficient.

2.2 Confidence regions

The confidence regions we consider are based on the following scaled dif-

ference between the loss of the averaging estimator and an estimator for

its risk,

D(β̂
a

p,βp) = p−1/2
[
`(β̂

a

p,βp)− ρ̂(β̂
a

p,βp)
]
, (10)

with the loss `(β̂
a

p,βp) as defined in (9) and

ρ̂(β̂
a

p,βp) = p− (r − 2)ω̂. (11)

The risk estimator is motivated in Section A.1.1, where we show that under

normally distributed errors, we have E[ρ̂(β̂
a

p,βp)] = ρ(β̂
a

p,βp).

Confidence regions for βp follow from Theorem 1 below, which shows

that (10) has the limiting distribution N(0, τ 2). When a consistent estima-

tor τ̂ 2 is available for τ 2, confidence regions with coverage rate 1 − α are
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readily constructed as

C(β̂
a

p) =
{
t : D(β̂

a

p, t) ≤ Φ−1(1− α)τ̂
}
. (12)

The asymptotic variance τ 2 is discussed in detail in Section 3. Here we

only provide the estimator that is used to operationalize (12), which is

τ̂ 2 = 2 + 2
p

n+ k
− 4

(r − 2)2

pr

λ̂2

(λ̂2 + 1)2
− 8

r

n+ k

1

λ̂2 + 1

(
1− r

p

1

λ̂2 + 1

)
,

(13)

where λ̂2 estimates the non-centrality parameter of the F -test appearing

in (8) as

λ̂2 = max
(

0, F̂ − 1
)
. (14)

The trimming is suggested by Beran (1995) to ensure that the noncentrality

parameter estimate is positive. It will not affect the asymptotic results, as

F̂ − 1 converges in probability to a nonnegative constant.

The factor (r − 2)2 in (13) is motivated by the variance of D̂(β̂
a

p, β̂p)

for finite r under exact normality of the errors as derived in Section A.1.2.

2.3 Geometric intuition

The averaging weights (8) are selected to achieve a low risk (9). Figure 1

displays the parameter vectors βp, β̂p, and β̃p where the subscript s in-

dicates that they are rescaled by (n−1Σ̂β,p)
−1/2. The averaging estimator

β̂
a

p,s closest to βp,s is given by the orthogonal projection of βp,s on the line

segment joining β̂p,s and β̃p,s. Defining δ̂p,s = β̂p,s − β̃p,s, this suggests

β̂
a

p,s = β̃p,s+
δ̂
′
p,s(βs − β̃p,s)

δ̂
′
n,sδ̂p,s

δ̂p,s = β̃p,s+

[
1−

δ̂
′
p,s(β̂p,s − βp,s)

δ̂
′
p,sδ̂p,s

]
δ̂p,s. (15)

Multiplying from the left with (n−1Σ̂β,p)
1
2 , we get the averaging estimator

β̂
a

p = β̃p +
nδ̂
′
pΣ̂
−1
β,p(βp − β̃p)

nδ̂
′
pΣ̂
−1
β,pδ̂p

δ̂p = β̃p +

[
1−

nδ̂
′
pΣ̂
−1
β,p(β̂p − βp)

nδ̂
′
pΣ̂
−1
β,pδ̂p

]
δ̂p. (16)

where δ̂p = β̂p − β̃p.
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Figure 1: Power resulting from recentered confidence regions

β̃p,s

β̂p,sβp,s

H0

β̂
a

n,s

β̃p,s

β̂p,sβp,s

H0

β̂
a

n,s

Note: βp,s = (n−1Σ̂β,p)
− 1

2βp, and similar for the other vectors. H0

denotes the parameter vector under the null hypothesis.

The denominator equals that in the averaging weights (8). In the nu-

merator, E[nδ̂
′
pΣ̂
−1
β,p(β̂p−βp)|Xn,k] = tr[nΣ̂

−1
β,pcov(β̂p, δ̂p|Xn,k)] = r, corre-

sponding to the leading term in the numerator of (8). As such, the weights

(8) estimate the projection that minimizes the loss `(β̂
a

p,βp).

Figure 1 also shows a particular realization of a confidence region cen-

tered at the unrestricted estimator β̂p,s given by the larger circle, and

one recentered at the averaging estimator β̂
a

p,s given by the smaller circle.

While the reduction in volume appears attractive, Efron (2006) points out

that this reduction will not necessarily improve the power of corresponding

tests. We illustrate this by comparing both panels of Figure 1. On the

left, the restricted estimator β̃p,s is further away from the null hypothesis

than the true parameter vector βp,s. In this case, recentering shifts the

confidence region away from the parameter vector under the null and we

gain power against H0. On the right, the restricted estimator is close to

the parameter vector under the null. The recentered confidence region now

does not reject the null, while the standard confidence region would. The

choice of the restrictions is studied in Section 3.2.
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3 Theoretical results

3.1 Assumptions

Let M > 0 denote a generic finite constant that can differ across equations.

We follow (Chao et al., 2012) in writing a.s. for almost surely and a.s.n.

for almost surely for n large enough.1

Assumption 1 For all n, k/n ≤ κ̄ < 1. As (r, n) → ∞, (a) k
n
→ κ, (b)

p
n
→ π, (c) r

n
→ ρ with κ ∈ [0, 1) and (π, ρ) ∈ [0, 1]× [0, 1].

The first part restricts the number of parameters in the model to be strictly

smaller than the number of observations. Assumption 1 provides the rate

conditions, which allow for the number of parameters in the model (k), the

number of parameters of interest (p), and the number of restrictions im-

posed on the parameters of interest (r) to increase possibly proportionally

to the sample size (n). Note that we write (r, n) → ∞, but as r ≤ p ≤ k,

when r →∞ also (p, k)→∞.

Assumption 2 Conditional on Xn,k, {εi} is an independent sequence with

E[εi|Xn,k] = 0, E[ε2i |Xn,k] = σ2, E[ε4i |Xn,k] = E[ε4i ] ≤M <∞.

Assumption 2 specifies relatively standard assumptions on the error terms.

The assumption that {εi} is independent conditional on Xn,k is the same

as in Chao et al. (2012) where the errors are independent conditional on the

set of instruments. Notice that we assume conditional homoskedasticity.

Extending the results to heteroskedastic models as in Cattaneo et al. (2018)

and Anatolyev and Sølvsten (2020) would require significant extensions to

the proofs.

Assumption 3 The regressors and restrictions satisfy the following:

(a) Denote by µ
(1)
n,k, . . . , µ

(k)
n,k the eigenvalues of n−1X ′n,kXn,k sorted in de-

creasing order. There exist finite positive constants m and M such that

m ≤ µ
(k)
n,k ≤ µ

(1)
n,k ≤M a.s.n.

1An event En occurs a.s.n. if P(∃N : ∀n ≥ N,En) = 1. Suppose En = |Xn −X| < ε
for a sequence of random variables Xn. Then if, for all ε > 0, En occurs a.s.n., we have
that Xn →a.s. X. However, a.s.n. is slightly weaker, as we can also consider events
En = |Xn| < M for some M > 0.
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(b) The restrictions are such that R′k,rθk − cr = n−1/2R′k,rhk.

(c) Define λ̄2 = r−1σ−2h′kRk,r(R
′
k,r(n

−1X ′n,kXn,k)
−1Rk,r)

−1R′k,rhk. Then,

λ̄2 →a.s. λ
2, where 0 ≤ λ2 <∞. (17)

Assumption 3 specifies the properties of the regressors and the imposed

restrictions. Part (a) guarantees that the inverse of n−1X ′n,kXn,k exists

almost surely for sufficiently large n. Part (b) ensures that the misspec-

ification bias induced by the imposed restrictions is local-to-zero. This

excludes the trivial case where all weight is placed on the unrestricted es-

timator. Part (c) ensures almost sure convergence of the noncentrality

parameter of the F -test.

Finally, we impose the following convergence results.

Assumption 4 Under Assumption 1, we have the following.

(a) Define Sk = Rk,r(R
′
k,r(X

′
n,kXn,k)

−1Rk,r)
−1R′k,r(X

′
n,kXn,k)

−1, and let

hk be as in Assumption 3. Then,

1

n2

n∑
i=1

|r−1/2h′kSkxi,k|4 →a.s. 0. (18)

(b) Let P [A] = A(A′A)−1A′. Define PG,n = P [Xn,k(X
′
n,kXn,k)

−1Gk,p],

PR,n = P [Xn,k(X
′
n,kXn,k)

−1Rk,r] and MXn,k
= In − P [Xn,k]. Then,

1

p

n∑
i=1

([PG,n]ii − π)2 →a.s. 0,

1

p

n∑
i=1

([PR,n]ii − ρ)2 →a.s. 0,

1

n

n∑
i=1

([MXn,k
]ii − (1− κ))2 →a.s. 0.

(19)

Assumption 4 provides technical conditions required for the central limit

theorem we invoke. To gain intuition for part (a), it is helpful to consider

the case where restrictions are imposed on all parameters in the model,

i.e. Rk,r = Ik. In this case Sk = Ik. Moreover, suppose hk is a vector

of ones. Then, part (a) reduces to 1
n2

∑n
i=1

∣∣∣ 1√
k

∑k
j=1 xij

∣∣∣4 →a.s. 0, where

xij = [xi,k]j. If xij is independent across i and j with finite fourth moment,
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then part (a) follows from the strong law of large numbers.

Part (b) places a condition on the convergence of the diagonal elements

of projection matrices. This is similar to the assumptions used in Anderson

et al. (2010) and Kunitomo (2012), who require the convergence in (19) to

hold in probability. A slightly more stringent version appears in Anatolyev

(2012) who assumes that for fixed regressors maxi=1,...,n |[PG,n]ii − π| →
0. Convergence of the diagonal elements of projection matrices in high-

dimensional models is discussed in depth in Anatolyev and Yaskov (2017).

3.2 Limiting distribution and power

The following theorem is the main result of this paper.

Theorem 1 Under Assumption 1–4,

D(β̂
a

p,βp)⇒ N(0, τ 2), (20)

where

τ 2 = 2

(
1 +

π

1− κ

)
−4

ρ

π

λ2

(λ2 + 1)2
−8

ρ

1− κ
1

λ2 + 1

(
1− ρ

π

1

λ2 + 1

)
, (21)

with λ2 defined in Assumption 3 and (κ, π, ρ) defined in Assumption 1. The

asymptotic variance τ 2 is consistently estimated by (13).

The proof is provided in Appendix A.2. The key underlying result is an

adaptation of Lemma A2 from Chao et al. (2012) to the current setting.

The benchmark to which we can compare τ 2 is the variance of the

(rescaled) F -test on the p parameters of interest provided by Anatolyev

(2012). This variance equals τ 2 = 2(1 + π
1−κ). In a low-dimensional setting

where π → 0, this reduces to τ 2 = 2. From (21), we see that averaging

leads to a lower asymptotic variance by introducing two negative terms.

The latter of these two terms is only present in the high-dimensional regime

where ρ 6→ 0.

To gain insight in the effect of the negative terms, suppose that ρ = π,

so that we impose restrictions on all parameters of interest, and λ2 = 1, so

that we have mild misspecification bias. In this case, τ 2 = 1 and, even in a
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high-dimensional set-up, the variance no longer depends on the dimensions

(k, p, r).

One might expect the largest gains when the imposed restrictions are

correct, but this is not the case. When λ2 = 0, then τ 2 = 2(1 + π
1−κ) −

8 ρ
1−κ(1− ρ

π
). In this case, the lowest possible variance arises when ρ = 1

2
π,

in which case τ 2 = 2. We see that imposing correct restrictions will not

reduce the variance in the low-dimensional case where (π, ρ)→ 0 compared

to the standard F -test. However, the high-dimensional limit distribution

reveals that it reduces the variance compared to the standard F -test.

Although a reduction in the variance of the limiting distribution has

effects on power, the discussion in Section 2.3 shows that power is also

affected by recentering the confidence region from β̂p to β̂
a

p. Denote by β0

the value of the parameter vector under the null hypothesis. We have the

following result on the power of a test based on (10).

Theorem 2 Suppose βp − β0 = p−γn−1/2h0,p for some γ > 0, and βp −
E[β̃p] = n−1/2hp, with h0,p and hp satisfying Assumption 3. Suppose γ is

such that under Assumption 1,

p−1/2−2γh′0,pΣ̂
−1
β,ph0,p − 2p−1/2−γω̂h′0,pΣ̂

−1
β,php →p ∆ <∞ (22)

Then, with τ 2 defined in Theorem 1,

D(β̂
c
,β)⇒ N(∆, τ 2). (23)

The proof is in Appendix A.3.

The first term of (22) is the noncentrality parameter from the stan-

dard F -test. It is finite when γ = 1/4. As such, local alternatives are

of O(n−1/2p−1/4), which coincides with Anatolyev (2012). However, if

p−1h′0,pΣ̂
−1
β,php →p ∆2 < 0, which occurs for example when hp = b ·h0,p for

some b < 0, then we can set γ = 1/2. As such, we have power against local

alternatives of O(n−1/2p−1/2) instead of the usual O(n−1/2p−1/4).

To highlight how to select a restricted estimator, consider the following

setting. Denote by ep,1 = (1, 0, . . . , 0)′. Suppose β0 = 0p and the unknown

parameter vector of interest βp = n−1/2σ11 · d · ep,1, where σ2
11 = [Σβ,p]1,1.

When γ = 1/2, h0,p = p1/2σ11 · d · ep,1. Note that in this set-up, a t-test on
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the nonzero coefficient would converge to N(d, 1).

Suppose a researcher has a (correct) prior belief which coefficient is

nonzero and what the sign of this coefficient is. Denote by β̃p the estimator

that imposes the exclusion restrictions, and define the restricted estimator

β̄p = β̃p +
(p
n

)1/2
s11 · d̄ · ep,1, (24)

where s211 = [Σ̂β,p]1,1 and we assume that s211 →p σ
2
11. Since E[β̃p] = βp, we

have hp = −p1/2s11 · d̄ · ep,1. Also, the averaging weight ω̂ →p (d̄2 + 1)−1.

Substituting the foregoing expressions into (22), the non-centrality pa-

rameter ∆ = 2d(d̄2 + 1)−1d̄. This is maximized for d̄ = 1, in which case

D(β̂
a

p,βp) ⇒ N(d, 1). So if the researcher has correct prior beliefs, the

asymptotic distribution coincides with that of a t-test on the nonzero co-

efficient in the unrestricted model. The F -test however has noncentrality

parameter p−1/2d→ 0 and only has trivial power.

What if the researcher is wrong about the sign of the coefficient? In

this case, d̄ = −1, and D(β̂
a

p,βp) ⇒ N(−d, 1). If we think of the test as

an F -test, then we only reject when D(β̂
a

p,βp) is large and positive, i.e.

we perform a one-sided test. In this case, choosing the wrong sign implies

a loss of power. However, the asymptotic results suggest that this can be

circumvented by carrying out a two-sided test. Numerically, we find that

for small p, most rejections stem from positive values of D(β̂
a

p,βp), and a

two-sided test is conservative. However, for large values of p, the two-sided

test maintains power even when the researcher imposes the wrong sign.

It is also of interest to consider when we lose power compared to the

standard F -test. Suppose that γ = 1/4, so that the standard F -test indeed

has power. A power loss occurs when the second term of (22) (partly)

cancels against the first. For this to happen, we need to have hp = b ·
p−1/4h0,p for some b > 0. However, in this case, ω̂ →p 1. Therefore,

as a practical recommendation, the regular F test can be used when the

averaging weight is fully placed on the restricted model.
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4 Numerical analysis

We consider the linear regression model (1) where all parameters are of in-

terest, so k = p andGk,p = Ip. We vary the sample size n = {100, 400, 1600}
and the number of parameters of interest as p = {6, 12, 24, n/4, n/2}.

The parameters of interest β are set to reflect the setting that there

are a few large parameters, while the remaining are close to zero, i.e. for

j = 1, . . . , p,

βj =
c√
n

j−1

(
∑p

i=1 i
−2)

1/2
. (25)

The parameter c governs the magnitude of the coefficients and is varied as

c = {−6, . . . , 6}.
We set xi,p = Lpzi,p and generate zi,p and εi independently (1) from a

standard normal distribution, or (2) as standardized squared t(10) random

variables to reflect a setting where regressors and errors only have lower

order moments. The matrix Lp is obtained from a Cholesky decomposition

of Σp = E[xi,px
′
i,p] with elements [Σp]ij = ρ|i−j| where we set ρ = 0.4. All

results are averaged over 10,000 draws of the set {xi, εi}. Estimation always

includes an intercept.

Confidence regions are constructed as described in Section 2.2. The

unrestricted estimator is obtained as in (7). Following the discussion be-

low Theorem 2, the unrestricted estimator is averaged with the restricted

estimator corresponding to (24), with β̄ the restricted estimator from (7)

imposing that βi = 0 for i > 1. The case where all but the first three

coefficients are set to zero is presented in Appendix B.1.

We consider a researcher that beliefs the true effect of the first coefficient

is positive. We therefore set d̄ = 1 in (24) corresponding to the optimal

choice if there is only a single nonzero coefficient, which in the setting

here is only approximately correct. Notice that the researcher is correct

when c > 0 in (25). We perform both a one-sided test that rejects when

D(βap,βp) > Φ−1(1 − α)τ̂ as well as a two-sided test that rejects when

|D(βap,βp)| > Φ−1(1− α/2)τ̂ with τ̂ as in (13) and α = 0.05.

In Table 1, we show the coverage rate for the proposed confidence re-

gions. In the upper panel, we consider the one-sided test. If the regressors

and the errors are drawn from a normal distribution, the coverage rate is

13



Table 1: Coverage rate.

n p = 6 p = 12 p = 24 p = n
4

p = n
2

One-sided N 100 0.959 0.955 0.948 0.946 0.931
400 0.959 0.954 0.952 0.949 0.947
1600 0.961 0.958 0.950 0.957 0.956

t(10)2 100 0.913 0.898 0.891 0.896 0.876
400 0.928 0.919 0.911 0.918 0.919
1600 0.939 0.934 0.929 0.936 0.934

Two-sided N 100 0.970 0.970 0.967 0.965 0.954
400 0.973 0.968 0.969 0.965 0.961
1600 0.975 0.974 0.971 0.967 0.964

t(10)2 100 0.928 0.916 0.911 0.918 0.900
400 0.942 0.936 0.931 0.940 0.936
1600 0.952 0.949 0.947 0.951 0.946

Note: coverage rate at β = 0, sample size n, number of parameters of in-
terest p. The unrestricted estimator from (7) is averaged with (24) where
d̄ = 1. N indicates regressors and errors drawn from a normal distri-
bution, t(10)2 from a standardized squared t(10) distribution. Nominal
coverage equals 0.95.

close to the nominal level. When the regressors and errors are standard-

ized t(10)2 random variables, coverage drops for small values of n and this

drop is worse for large values of p. As n increases, the coverage rate ap-

proaches the nominal rate. For large n, the coverage rate does not depend

on the number of parameters of interest p, showing the robustness of the

confidence regions to the inclusion of many parameters.

In the lower panel of Table 1 we consider the two-sided test that is

motivated by the discussion following Theorem 2. For normally distributed

regressors and errors, we see that the test is conservative for small values of

p. Here, D(βap,βp) behaves like a regular F -test, and nearly all rejections

occur for large positive values. However, as p increases, we see coverage

approaching the nominal rate. For standardized t(10)2 random variables,

there is again some undercoverage for n = 100, but the test has close to

nominal coverage for larger values of n.

Figure 2 shows the power of the one-sided test (solid black line), the

two-sided test (dashed black line) and the standard F -test (solid gray line)
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Figure 2: Linear regression model: power.

(a) n = 100, p = 12
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(b) n = 100, p = n/4
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(c) n = 1600, p = 12
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(d) n = 1600, p = n/4
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Note: the figure shows power of a test based on (10) against H0 : β = 0 at
sample size n with number of parameters of interest p. The unrestricted esti-
mator (7) is averaged with the restricted estimator in (24). Black solid lines
correspond to a one-sided test based on Theorem 1, black dashed lines to the
two-sided variant. Gray solid lines correspond to the usual F -test. The nominal
level of the test is α = 0.05.

against the null that βp = 0. In the upper left panel, the sample size

(n = 100) and the number of parameters of interest (p = 12) are small. We

observe modest power gains when the researcher is right on the sign of the

first coefficient (positive values on the x-axis), while a loss is observed when

the researcher is wrong (negative values on the x-axis). These differences

become stronger when moving to the upper right panel, where we increase

the number of parameters of interest to p = n/4.

In the lower left panel, we increase the sample size (n = 1600), but keep
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the number of parameters of interest fixed to p = 12. We observe almost

no difference with the power curve in the upper left panel. However, if we

move to the high-dimensional case where p = n/4 in the right lower panel,

we see a strong loss of power of the standard F -test. We also clearly observe

the effects described in the discussion following Theorem 2. The one-sided

test now really is one-sided, while the two-sided test maintains power even

when the wrong sign is imposed (dashed line). As the theory indicates, the

two-sided test is now close to dominating the standard F -test.

Additional results The case where s = 3, that is when the restricted

estimator allows the first three coefficients to be different from zero is re-

ported in Appendix B.1. There are no substantial differences, although for

s = 3, the power for negative values of the true coefficients is higher. Ap-

pendix B.2 compares the developed confidence regions with the procedures

by Samworth (2005) and Casella and Hwang (1983), which we find to be

conservative when the number of parameters under the test increases.

5 Conclusion

To investigate whether averaging estimators can be used to improve infer-

ence, we construct confidence regions centered at James-Stein averaging

estimators. These regions are valid when the number of restrictions on the

parameters of interest increases, possibly proportionally, with the sample

size. When used for hypothesis testing, the imposed model restrictions can

lead to a power enhancement over standard F -tests.

Important future extensions include the high-dimensional linear regres-

sion model under heteroskedasticity, as considered in Cattaneo et al. (2018)

and recently in Anatolyev and Sølvsten (2020), or a joint limit theory for

more general models estimated e.g. by maximum likelihood. This requires

significant extensions to the methodology proposed here.
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Appendix A Mathematical details

A.1 Finite sample results under exact normality and

known error variance

In this section, we assume that εi|Xn,k
i.i.d∼ N(0, σ2) and σ2 is known. We

calculate an unbiased risk estimator and the variance of D(β̂
a

p,βp) defined

in (10). The former is a standard calculation, while the latter appears new.

The risk estimator is used to recenter the loss in (10), while the variance

motivates a finite sample correction in (13).
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We use the following notation in addition to that defined in Section 2.

The estimators for the covariance matrix, conditional on Xn,k, of the re-

stricted estimators θ̃k from (5) and β̃p from (7) are

Σ̃θ,k = Σ̂θ,k − Σ̂θ,kRk,r(R
′
k,rΣ̂θ,kRk,r)

−1R′k,rΣ̂θ,k,

Σ̃β,p = σ̂2G′k,pΣ̃θ,kGk,p.
(A.1)

The difference between the unrestricted estimator and the restricted esti-

mator is denoted by

δ̂p = β̂p − β̃p, E[δ̂p] = δp. (A.2)

The estimator for the covariance matrix of δ̂p conditional on Xn,k is

Σ̂δ,p = Σ̂β,pBp,r(B
′
p,rΣ̂β,pBp,r)

−1B′p,rΣ̂β,p, (A.3)

with Bp,r as in (3) and Σ̂β,p as in (8).

A.1.1 Unbiased risk estimator

We will show that the risk estimator ρ̂(β̂
a

p,βp) defined in (11) satisfies

E
[
ρ̂
(
β̂
a

p,βp

)]
= ρ

(
β̂
a

p,βp

)
. (A.4)

In the derivations below, we define the conditional risk of any estimator β̄p

as ρ(β̄p,βp|Xn,k) = E[`(β̄p,βp)|Xn,k].

Standard calculations show that β̂p − βp
β̃p − E[β̃p]

δ̂p − δp

 ∼ N(0,V 3p), V 3p =

 Σ̂β,p Σ̂β,p −Ap Ap

Σ̂β,p −An Σ̂β,p −Ap O

Ap O Ap


(A.5)

where Ap = Σ̂β,pBp,r(B
′
p,rΣ̂β,pBp,r)

−1B′p,rΣ̂β,p, with Bp,r as in (3).

From (A.5), we conclude that β̃p and δ̂p are independent. As the weight

ω̂ only depends on δ̂p, the asymptotic risk of the averaging estimator con-
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sists of two terms,

ρ(β̂
a

p,βp) = E
[
n(β̃p − (βp − δp))′Σ̂

−1
β,p(β̃p − (βp − δp))

]
+ ρ(δ̂

a

p, δp).

(A.6)

The first term equals tr(Σ̃β,pΣ̂
−1
β,p) = p− r, and the second term is

ρ(δ̂
a

p, δp) = E
[
(δ̂

a

p − δp)′Σ̂
−1
β,p(δ̂

a

p − δp)
]
, δ̂

a

p = (1− ω̂)δ̂p. (A.7)

The following quantities are helpful in the derivations below.

ω̂ =
r − 2

ny′nPR,nyn
,

g(yn) = − r − 2

ny′nPR,nyn
yn,

h(yn) = − r − 2

ny′nPR,nyn
PR,nyn,

(A.8)

with PR,n as in Assumption 4.

In terms of the quantities in (A.8), we have

ρ(δ̂
a

p, δp|Xn,k) = E [ε′nPR,nεn + 2h(yn)′εn + g(yn)′h(yn)|Xn,k]

= tr(PR,n) + 2E[∇′h(yn)|Xn,k] + E[h(yn)′g(yn)|Xn,k],

(A.9)

where the second term in the last line is obtained by applying Stein’s lemma

to the second term on the first line.

The second term of (A.9) can be further written out using that

∂hi(yn)

∂yk
= −(r − 2)

[
[PR,n]ik
y′nPR,nyn

− 2

∑
l,n[PR,n]ilyl[PR,n]kmyn

(y′nPR,nyn)2

]
, (A.10)

such that

∇′h(yn) = −(r − 2)

[
tr(PR,n)

y′nPR,nyn
− 2

y′nP
2
R,nyn

(y′nPR,nyn)2

]
= −(r − 2)2

1

y′nPR,nyn
.

(A.11)
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The conditional risk of the averaging estimator is then found to be

ρ(β̂
a

p,βp|Xn,k) = p− (r − 2)E[ ω̂|Xn,k]. (A.12)

It follows that the risk is ρ(β̂
a

p,βp) = p− (r− 2)E[ω̂] and the unbiased risk

estimator is ρ̂(β̂
a

p,βp) = p− (r − 2)ω̂.

A.1.2 Variance of D(β̂
a

p,βp)

To calculate the variance of D(β̂
a

p,βp) we split the statistic D(β̂
a

p,βp) into

two zero mean components,

D(β̂
a

p,βp) = Arr + Aδδ, (A.13)

where

Arr = p−
1
2

[
n(β̃p − (βp − δp))′Σ̂

−1
β,p(β̃p − (βp − δp))− (p− r)

]
,

Aδδ = p−
1
2

[
n(δ̂p − δp)′Σ̂

−1
β,p(δ̂p − δp)− r − 2ω̂

(
nδ̂
′
pΣ̂
−1
β,p(δ̂p − δp)− (r − 2)

)]
.

Since β̃p and δ̂p are independent, cov(Arr, Aδδ) = 0. It is therefore

sufficient to determine the variance of the individual terms. The variance

of Arr follows from standard results on quadratic forms in normal vectors.

E[A2
rr] =

2

p
tr(Σ̂

−1
β,pΣ̃β,pΣ̂

−1
β,pΣ̃β,p) = 2

p− r
p

. (A.14)

For the variance of Aδδ, we use definitions (A.8) to write

E[A2
δδ] =

1

p
E
{

[ε′nPR,nεn − r + 2 (h(yn)′εn −∇′h(yn))]
2
}

=
1

p
E
{

[ε′nPR,nεn − r]2 + 4 (h(yn)′εn −∇′h(yn))
2

+ 4 (h(yn)′εn −∇′h(yn)) [ε′PR,nεn − r]
}

= 2
r

p
+

4

p
E
{

(h(yn)′εn)
2

+ (∇′h(yn))
2 − 2ε′nh(yn)∇′h(yn)

+ h(yn)′εnε
′
nPR,nεn − ε′nPR,nεn∇′h(yn)

}
.

To proceed, we use the following result derived in Theorem 3 of Stein (1981)
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by repeatedly applying Stein’s lemma.

E
[
(h(yn)′εn)2

]
= E

[
h(yn)′h(yn) + (∇′h(yn))2 (A.15)

+ tr[(∇h(yn)′)2] + 2

p∑
i=1

p∑
j=1

hi(yn)∇j∇ihj(yn)
]
,

E [ε′nh(yn)∇′h(yn)] = E

[
(∇′h(yn))2 +

p∑
i=1

p∑
j=1

hi(yn)∇j∇ihj(yn)

]
.

The final two terms of (A.15) require an extension to the results pre-

sented by Stein (1981). Applying Stein’s lemma twice, we have

E[ε′nPR,nεnh(yn)′εn] = E [(∇′h(yn)ε′nPR,nεn + 2h(yn)′PR,nεn]

= E [∇′h(yn)ε′nPR,nεn + 2∇′PR,nh(yn)] .
(A.16)

In total, we now have

E[A2
δδ] =

2r

p
+

4

p
E
[
h(yn)′h(yn) + tr

[
(∇h(yn)′)

2
]

+ 2∇′PR,nh(yn)
]
.

(A.17)

We can work out the final two terms explicitly,

tr
[
(∇h(yn)′)2

]
= (r − 2)2

[
r

(ynPR,nyn)2

]
,

∇′PR,nh(yn) = − (r − 2)2

y′nPR,nyn
.

(A.18)

Substituting this into (A.17) gives

E[A2
δδ] = 2

r

p
− 4(r − 2)2

p
E

[
1

nδ̂pΣ̂
−1
β,pδ̂p

− r

(nδ̂pΣ̂
−1
β,pδ̂p)

2

]
. (A.19)

Adding the variances of Arr and Aδδ, we obtain

V[D(β̂
a

p,βp)] = 2− 4(r − 2)2

pr
E

[
F̂ − 1

F̂ 2

]
. (A.20)

From this expression it is straightforward to obtain an unbiased estima-
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tor for the variance by removing the expectation. However, this estima-

tor has the drawback that in finite samples potentially F̂ − 1 < 0, while

asymptotically this quantity is always nonnegative. We therefore define

λ̂2 = max(0, F̂ − 1) and estimate the variance by

V[D(β̂
a

p,βp)] = 2− 4(r − 2)2

pr

λ̂2

(λ̂2 + 1)2
. (A.21)

Compared to (13), this expression misses the terms that appear in the high-

dimensional case where (r, p, k)/n 6→ 0. The reason is that these additional

term arise from estimation uncertainty in σ2, while this section supposes

σ2 to be known. The main contribution of (A.21) is the finite sample

correction appearing in the term (r − 2)2, which we found to be effective

for small r in numerical computations.

A.2 Proof of Theorem 1

A.2.1 Preliminaries

Throughout, M denotes a positive, finite constant that can differ between

occurrences. We first prove that a key result from Chao et al. (2012),

henceforth CSHNW, holds under a set of conditions that is adapted to our

case. We will follow the notation of CSHNW as close as possible.

Lemma A.1 (Adaptation of CSHNW, Lemma A2) Suppose that, con-

ditional on Xn,k, the following conditions hold a.s.

(i). The matrix An ∈ Rn,n is symmetric and satisfies:

(a) e′iA
j
nei ≤M for j = 1, 2,

(b) tr(Aj
n) ≤Mp for j = 2, 3, 4.

(ii). {Wi, εi} is an independent sequence, with D =
∑n

i=1 E[W 2
i |Xn,k] ≤

M a.s.n.

(iii). E[Wi|Xn,k] = 0, E[εi|Xn,k] = 0, E[ε2i |Xn,k] = E[ε2i ] = σ2, E[ε4i |Xn,k] ≤
M .

(iv).
∑n

i=1 E[|Wi|4|Xn,k]→a.s. 0.
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(v). p→∞ as n→∞.

Then for

Σ̄ =
2σ4

p

∑
i 6=j

A2
ij, (A.22)

and Ξ = D + Σ̄ > M a.s.n., it follows that

Y = Ξ−1/2

[
n∑
i=1

Wi +
1
√
p

∑
i 6=j

εiεjAij

]
⇒ N(0, 1), a.s. (A.23)

i.e. P(Y ≤ y|Xn,k)→ Φ(y) a.s. for all y.

Proof: The proof of Lemma A2 of CSHNW only relies on An (in their

notation P ) through their Lemma B1 to B4 and the requirement that

Ξ > M a.s.n. We first show that Lemma B1 to B4 continue to hold under

Assumption (i) instead of assuming An to be idempotent. Throughout, we

denote the i, j-th element of An as Aij.

Lemma A.1.1 (Adaptation of CSHNW, Lemma B1) Under Assump-

tion (i) of Lemma A.1 and for any subset I2 of the set {(i, j)ni,j=1} and any

subset I3 of {(i, j, k)ni,j,k=1},

(i).
∑

I2
A4
ij ≤Mp.

(ii).
∑

I3
A2
ijA

2
jk ≤Mp.

(iii).
∑

I3
|A2

ijAikAjk| ≤Mp.

Proof: Part (i)

∑
I2

A4
ij ≤

n∑
i=1

n∑
j=1

A4
ij +

n∑
i=1

∑
j 6=j′

A2
ijA

2
ij′

=
n∑
i=1

(e′iA
2
nei)

2

≤
n∑
i=1

e′iA
4
nei

= tr(A4
n) ≤Mp,

(A.24)

where the second inequality uses the fact that in general v′Bv ≤ λmax(B)v′v,

where λmax(B) denotes the maximum eigenvalue of B. We apply this with
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B = eie
′
i, so that λmax(B) = 1. The last equality follows by Assumption

(i) part (b).

Continuing with part (ii), we have

∑
I3

A2
ijA

2
jk ≤

n∑
j=1

(
n∑
i=1

A2
ij

)(
n∑
k=1

A2
kj

)

=
n∑
j=1

(e′jA
2
nej)

2

≤Mp,

(A.25)

with the last inequality derived as in part (i).

Finally, for part (iii)∑
I3

|A2
ijAikAjk| ≤

∑
i,j

A2
ij

∑
k

|AikA)jk|

≤
n∑
i=1

n∑
j=1

A2
ij

√√√√ n∑
k=1

A2
ik

n∑
k=1

A2
jk

=
n∑
i=1

n∑
j=1

A2
ij

√
e′jA

2
neje

′
iA

2
nei

≤M
n∑
i=1

n∑
j=1

A2
ij

= Mtr(A2
n) ≤Mp,

(A.26)

where on the fourth line we use Assumption (i) part (a) and on the final

line Assumption (i) part (b). �

In the following lemma, we momentarily suspend the subscript to indi-

cate the dimensions off the involved matrices, so An = A and Dn = D.

Lemma A.1.2 (Adaptation of CSHNW, Lemma B2) Suppose Assump-

tion (i) of Lemma A.1 holds for A. Then a.s.n.

(i). tr[(A−D)4] ≤Mp where [D]ii = [A]ii.

(ii). |
∑

i<j<k<lAikAjkAilAjl| ≤Mp.

(iii). |Sn| ≤Mp,
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where Sn =
∑

i<j<k<l(PikPjkPilPjl + PijPjkPilPkl + PijPikPjlPkl).

Proof: Parts (ii) and (iii) only rely on part (i) and Lemma A.1.1. We

therefore only prove part (i).

(A−D)4 = A4 +D4 +AD2A+DA2D

−A2DA−A3D +A2D2

−ADA2 −DA3 +D2A2

−D2AD −AD3 +ADAD

−DAD2 −D3A+DADA.

(A.27)

Taking the trace, we find

tr(A−D)4 = tr(A4)+tr(D4)+4tr(A2D2)−4tr(DA3)−4tr(AD3)+2tr(ADAD).

(A.28)

Now tr(A4) ≤Mp by Assumption (i) part (b). For the second term, using

repeatedly that v′eie
′
iv ≤ v′v, we have

tr(D4) =
n∑
i=1

(e′iAei)
4 ≤

∑
i=1

e′iA
4ei = tr(A4) ≤Mp. (A.29)

For the third term, we first use Assumption (i) part (a) and then Assump-

tion (i) part (b) to get

tr(A2D2) = tr(AD2A) =
n∑
i=1

e′iAD
2Aei ≤M

n∑
i=1

e′iA
2ei ≤Mp.

(A.30)

The same argument can be applied to the fourth and the fifth term. For

the final term, notice that it equals

tr(D1/2ADAD1/2) ≤Mtr(D1/2A2D1/2) = Mtr(ADA) ≤Mtr(A2) ≤Mp.

(A.31)

This completes the proof of part (i). �

Continuing with Lemma B3 of CSHNW, we note that it only relies on

Lemma B1 and B2, so it holds in our case as well. Lemma B4 of CSHNW

uses the fact that Aii < 1 in equation B.8. This can be replaced by our
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Assumption (i) since in the second to last line of that equation, we have

M

p2

n∑
i=1

(e′iA
2
nei)

2 ≤ M

p2

n∑
i=1

e′iA
2
nei ≤

M

p
. (A.32)

We conclude that Lemma B1-B4 also hold under Assumption (i) and Lemma

A2 of CHSNW holds under the stated assumptions of Lemma A.1. �

A.2.2 Consistency of error variance and weights

For the proof of Theorem 1 we need the following result on the consistency

of the estimator of the error variance σ̂2 and the weights ω̂.

Lemma A.2 Define σ̂2 as in (6) and ω̂ as in (8). Under Assumption 1–4,

(a) σ̂2 − σ2 = Op(n
−1/2),

(b) ω̂ − ω = op(1) with ω = (λ2 + 1)−1 and λ2 defined in Assumption 3.

Proof: Part (a). We have

E[σ̂2] = σ2,

Var(σ̂2|Xn,k) =
1

(n− k)2
[
E[(ε′nMXn,k

εn)2|Xn,k]− E[ε′nMXn,k
εn|Xn,k]

2
]

=
σ4

(n− k)2

[
(E[ε4i |Xn,k]/σ

4 − 3)
n∑
i=1

[MXn,k
]2ii + 2(n− k)

]

≤M
σ4

n− k
(1 + oa.s.(1)),

where the last line uses Assumption 2 to bound the fourth moment and

Assumption 4 to write

n

(n− k)2
1

n

n∑
i=1

[MXn,k
]2ii =

n

(n− k)2

{
(1− κ)2 +

1

n

n∑
i=1

([MXn,k
]ii − (1− κ))2

}
=

1

n− k
(1 + oa.s.(1)).

(A.33)

Define now Yn = P(|σ̂2 − σ2| > ε|Xn,k), then Yn →a.s. 0 and Yn ≤ 1. By

the dominated convergence theorem, P(|σ̂2 − σ2| > ε) = E[Yn]→ 0.

28



Part (b). Recall that ω̂ = r
r−2

1

F̂
. Rescaling the F -statistic from (8) with

σ̂2, we have

σ̂2F̂ = r−1ε′nPR,nεn + σ2λ̄2 + 2r−1n−1/2h′SkX
′
n,kεn. (A.34)

The second term converges almost surely to σ2λ2 by Assumption 3. For

the first term, note that tr(PR,n) = r. Then,

r−1E[ε′nPR,nεn] = r−1E[E[ε′nPR,nεn|Xn,k]]

= r−1σ2E[tr(PR,n)]

= σ2.

(A.35)

For the variance, by Ullah (2004) (Appendix A5), and using that condi-

tional on Xn,k, εi has bounded fourth moment,

var(r−1ε′nPR,nεn) = r−2E
[
E[(ε′nPR,nεn)2|Xn,k]

]
− σ4

≤ r−2ME[tr(PR,n(In � PR,n))] + 2σ4r−1

= r−2ME[tr((In � PR,n)1/2PR,n(In � PR,n)1/2)] + 2σ4r−1

≤ r−2ME[tr(PR,n)] + 2σ4r−1

= O(r−1),

(A.36)

where the inequality on the fourth line uses that PR,n � In, since PR,n is

idempotent. By Chebyshev’s inequality, as (r, n → ∞), r−1ε′nPR,nεn →p

σ2.

The final term of (A.34) has expected value equal to zero, and

var(r−1n−1/2h′SkX
′
n,kεn|Xn,k)

= σ2 · r−1 ·
[
r−1h′Rk,r(R

′
k,r(n

−1X ′n,kXn,k)
−1Rk,r)

−1R′k,rh
]

= σ2r−1(λ2 + oa.s(1)).

(A.37)

Using again the dominated convergence theorem, this shows that the final

term of (A.34) converges to zero in probability.

We have now established that, as (r, n → ∞), σ̂2F̂ →p σ
2(λ2 + 1) and
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by the consistency of σ̂2,

ω̂ =
r − 2

r

1

F̂
→p

1

λ2 + 1
. (A.38)

This concludes the proof of Lemma A.2. �

A.2.3 Main proof of Theorem 1

After some rearrangements, we can write the object of interest (10) as

D(β̂
a

p,βp) = p−1/2
[
(β̂

a

p − βp)Σ̂
−1
β,p(β̂

a

p − βp)− p+ (r − 2)ω̂
]

= p−1/2
[
σ2

σ̂2

1

σ2
ε′n (PG,n − 2ω̂PR,n) εn − p+ 2ω̂r

]
− 2ω̂σ̂−2(pn)−1/2h′SkX

′
n,kεn + 4p−1/2ω̂

= p−1/2
[
σ2

σ̂2

1

σ2
ε′n (PG,n − 2ωPR,n) εn − p+ 2ωr

]
− 2ωσ̂−2(pn)−1/2h′SkX

′
n,kεn + op(1),

(A.39)

where the third equality uses that ω̂ →p ω ≤M .

The estimation uncertainty in σ̂2 will have an important effect in the

high-dimensional setting. We follow Anatolyev (2012) and rewrite

D(β̂
a

p,βp) = p−1/2

[(
1 +

σ̂2

σ2
− 1

)−1
1

σ2
ε′n (PG,n − 2ωPR,n) εn − p+ 2ωr

]
− 2ωσ−2(pn)−1/2h′SkX

′
n,kεn + op(1)

= p−1/2
[

1

σ2
ε′n (PG,n − 2ωPR,n) εn − p+ 2ωr

]
− p−1/2(p− 2ωr)

(
σ̂2

σ2
− 1

)
− 2ωσ−2(pn)−1/2h′SkX

′
n,kεn

− p−1/2
[(

σ̂2

σ2
− 1

)(
1

σ2
ε′n (PG,n − 2ω̂PR,n) εn − p+ 2ω̂r

)]
+ op(1)

= p−1/2
[

1

σ2
ε′n

(
PG,n − 2ωPR,n −

p− 2ωr

n− k
MXn,k

)
εn

]
− 2ωσ−2(pn)−1/2h′SkX

′
n,kεn + op(1).

(A.40)

In the above, the second equality follows from a Taylor expansion that uses
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(
1 + σ̂2

σ2 − 1
)−1

= 1 −
(
σ̂2

σ2 − 1
)

+ Op(n
−1/2), which holds by Lemma A.2.

To obtain the final line, we use the definition of σ̂2 and the fact that

p−1/2
[(

σ̂2

σ2
− 1

)(
1

σ2
ε′n (PG,n − 2ωPR,n) εn − p+ 2ωr

)]
= op(1),

(A.41)

since the second term in round brackets multiplied by p−1/2 is Op(1) by

(A.36), while the first term in round brackets is Op(n
−1/2) by Lemma A.2.

Define now

An = PG,n − 2ωPR,n −
p− 2ωr

n− k
MXn,k

Wi = −2ωσ−2(pn)−1/2h′Skxi,kεi.

(A.42)

We can then write

D(β̂
a

p,βp) =
n∑
i=1

Wi +
1

p1/2
1

σ2

∑
i 6=j

εiεjAij +
1

p1/2
1

σ2

n∑
i=1

Aiiε
2
i

=
n∑
i=1

Wi +
1

p1/2
1

σ2

∑
i 6=j

εiεjAij + op(1).

(A.43)

where we used that the final term on the first line has expectation 0 and

variance
E[ε4i ]

σ4
1
p

∑n
i=1A

2
ii = oa.s.(1) by Assumption 3. The dominated con-

vergence theorem then again shows that the final term is op(1).

To apply Lemma A.1, we verify the underlying assumptions. For As-

sumption (i), notice that PG,n, PR,n, MXn,k
are idempotent and satisfy

PG,nPR,n = PR,n and PG,nMXn,k
= On, PR,nMXn,k

= On. We therefore

have

A2
n = PG,n + 4ω(ω − 1)PR,n +

(
p− 2ωr

n− k

)2

MXn,k
,

A3
n = PG,n − 2ω(4ω2 − 6ω + 3)PR,n −

(
p− 2ωr

n− k

)3

MXn,k

A4
n = PG,n + 8ω(2ω3 − 4ω2 + 3ω − 1)PR,n +

(
p− 2ωr

n− k

)4

MXn,k
.

(A.44)

where 0 ≤ ω ≤ 1. We can now verify Assumption (i). For instance, under
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Assumption 1, and using that the diagonal elements of a projection matrix

are ≤ 1,

e′iA
2
nei ≤ 1 + 3ω(ω − 1) +

(
p− 2ωr

n− k

)2

≤M,

tr(A2
n) = p+ 4ω(ω − 1)r +

(
p− 2ωr

n− k

)
(p− 2ωr) ≤Mp.

(A.45)

The remainder of Assumption (i) follows analogously.

The first part of Assumption (ii) of Lemma A.1 follows from Assump-

tion 2. We also have by Assumption 3, D =
∑n

i=1 E[W 2
i |Xn,k] = 4ω2 r

p
λ̄2 →a.s.

4ω2λ2 ρ
π
≤ M so that the second part of Assumption (ii) also holds. As-

sumption (iii) follows from Assumption 2. Assumption (iv) follows from

Assumption 3. Assumption (v) follows from Assumption 1.

Finally, we need to verify that Ξ is bounded from below a.s.n. Notice

that

Σ̄ =
2σ4

p

(
tr(A2

n)−
n∑
i=1

A2
ii

)

=
2σ4

p
tr(A2

n) + oa.s.(1)

= 2

[
1 + 4ω(ω − 1)

r

p
+
p− 2ωr

n− k

(
1− 2ω

r

p

)]
+ oa.s.(1),

D = 4ω2λ2
r

p
+ oa.s.(1).

(A.46)

Using that ω = (λ2 + 1)−1, i.e. λ2 = ω − 1, the minimal value of Ξ equals

Ξmin =
(2p− r)(n− k) + 2p2

p(n− k + 2r)
+ oa.s.(1)

≥ (2p− p)(n− k) + 2p2

p(n− k + 2p)
+ oa.s.(1)

= 1 + oa.s.(1).

(A.47)

Hence, Ξ is bounded from below a.s.n.

We now conclude from Lemma A.1 that

Ξ−1/2D(βap,βp)⇒ N(0, 1), a.s. (A.48)
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Following the argument at the top of p. 81 of Chao et al. (2012), the

unconditional probability P(Ξ−1/2D(βap,βp) ≤ y) = E[P(Ξ−1/2D(βap,βp) ≤
y|Xn,k)]. Since for some ε > 0, supn E[|P(Ξ−1/2D(βap,βp) ≤ y)|1+ε] < ∞,

the convergence holds unconditionally, i.e. P(Ξ−1/2D(βap,βp) ≤ y)→ Φ(y).

Moreover, using (A.46) and the fact that and ω = (λ2 + 1)−1, we have

Ξ = D+Σ̄ = 2−4
c

λ2 + 1

ρ

π
+2

π

1− κ
−8

ρ

1− κ
1

λ2 + 1

(
1− ρ

π

1

λ2 + 1

)
+op(1).

(A.49)

This implies that Ξ →p τ
2 = 2 − 4 λ2

λ2+1
ρ
π

+ 2 π
1−κ − 8 ρ

1−κ
1

λ2+1

(
1− ρ

π
1

λ2+1

)
.

Hence, as (r, n→∞), N ⇒ N(0, τ 2). �

A.3 Power

Denote by T (β0
p) the test statistic under the parameter vector β0

p. Then,

T (β0
p) = T (βp) + p−1/2n

[
(βp − β0

p)
′Σ̂
−1
u,n(βp − β0

p) + 2(βp − β0
p)
′Σ̂
−1
u,n(β̂

a

p − βp)
]

= T (βp) + p−1/2n
[
(βp − β0

p)
′Σ̂
−1
u,n(βp − β0

p)

+2(βp − β0
p)
′Σ̂
−1
u,n(β̃p − E[β̃p] + (1− ω̂)(δ̂p − δp)− ω̂δp)

]
= T (βp) + p−1/2−2γ

[
h′0,nΣ̂

−1
u,nh0,n − 2pγ−1/2ω̂h′0,nΣ̂

−1
u,nhp

]
+ 2p−1/2−γh0,nΣ̂

−1
u,n

√
n(β̃p − E[β̃p] + (1− ω̂)(δ̂p − δp)).

(A.50)

The second line is asymptotically mean zero with finite asymptotic variance

when γ = 0 since h0,n satisfies Assumption 3. Since γ > 0, Chebyshev’s

theorem then gives that

T (β0
p) = T (βp) + p−1/2−γ

[
h′0,nΣ̂

−1
u,nh0,n − 2pγ−1/2ω̂h′0,nΣ̂

−1
u,nhp

]
+ op(1).

(A.51)

This completes the proof. �
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Figure 3: Linear regression model: power, restricted estimator with s = 3.

(a) n = 100, p = 12
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(b) n = 100, p = n/2
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(c) n = 1600, p = 12
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(d) n = 1600, p = n/2
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Note: see the note following Figure 2 with the change that [b]i =
√
p/3n when

i = 1, 2, 3 and 0 otherwise.

Appendix B Additional simulations results

B.1 Imposing less restrictions

The restricted estimator in Section 4 sets all but the first coefficient equal

to zero. Here we consider an estimator that sets all but the first three

coefficients equal to zero. In this case, we add the fixed vector b with [b]i =√
p/(3 · n) to the restricted estimator β̄. The division by 3 is motivated

by reconsidering the example below Theorem 2 and assuming that the first

three coefficients are nonzero and equal.

The power curves shown in Figure 3 show that for positive values of
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the coefficients, the power difference is quite small. For negative values,

we find that the power increases somewhat when allowing the first three

coefficients, instead of only the first one, to be different from zero.

B.2 Benchmark confidence regions

Consider the standard definition of a spherical confidence region.

Definition 1 For any estimator β̄p of the parameter vector of interest βp,

and critical values b̂, the confidence region is defined in terms of the loss

(9) as

C(β̄p, b̂) =
{
tp : `(β̄p, tp) ≤ b̂2

}
. (B.1)

The confidence regions by Casella and Hwang (1983) are given by Defini-

tion 1 centered at the averaging estimator with weights (8) restricted to be

less or equal then 1. Defining R(x) = 1− p−2
x

, the critical values are given

in their equation 4.7 as

b̂2CH =

{
R(b2χ)

[
b2χ − p log(R(b2χ))

]
if nq̂n ≤ b2χ,

R(nq̂n)[b2χ − p log(R(nq̂n))] if nq̂n > b2χ,
(B.2)

where b2χ indicates the critical values from a χ2(p) distribution.

Samworth (2005) Taylor expands (β̂
a

p−βp)′Σ−1β,p(β̂
a

p−βp) around βp =

0p to get

b̂2S = min

{
wα(0) +

1

2
w′′α(0)nq̂n, b

2
χ

}
, wα(0) =

(
bχ −

p− 2

bχ

)2

,

wα(0)′′ =
2

k

(
1− (p− 2)

b2χ

)[
(p− 2)(p− 1)

b2χ + p− 2
−

2(p− 2)b2χ
(b2χ + p− 2)2

+
(p− 2)2

b2χ + p− 2

]
+

2(p− 2)(p− 1)

b2χ · p
.

(B.3)

In Figure 4, we compare the power of the confidence regions based

on (10) (one-sided) to those by Casella and Hwang (1983) and Samworth

(2005). We see that for a small number of parameters of interest (p =

12), the difference between the regions is small, although the procedure by

Samworth (2005) is somewhat conservative. When the sample size increases
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Figure 4: Linear regression model: power compared to alternatives.

(a) n = 100, p = 12
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(b) n = 100, p = n/2
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(c) n = 1600, p = 12
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(d) n = 1600, p = n/2
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Note: see the note follow Figure 2. Gray dashed lines correspond to the regions
proposed by Samworth (2005), gray dotted lines to the regions proposed by
Casella and Hwang (1983).

and we consider a high-dimensional setting where p = n/4, the alternative

procedures are very conservative, and show substantial loss of power.
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