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Abstract

For multiple change-points detection of high-dimensional time series, we provide
asymptotic theory concerning the consistency and the asymptotic distribution of the
breakpoint statistics and estimated break sizes. The theory backs up a simple two-
step procedure for detecting and estimating multiple change-points. The proposed
two-step procedure involves the maximum of a MOSUM (moving sum) type statistics
in the first step and a CUSUM (cumulative sum) refinement step on an aggregated
time series in the second step. Thus, for a fixed time-point, we can capture both the
biggest break across different coordinates and aggregating simultaneous breaks over
multiple coordinates. Extending the existing high-dimensional Gaussian approxima-
tion theorem to dependent data with jumps, the theory allows us to characterize the
size and power of our multiple change-point test asymptotically. Moreover, we can
make inferences on the breakpoints estimates when the break sizes are small. Our
theoretical setup incorporates both weak temporal and strong or weak cross-sectional
dependence and is suitable for heavy-tailed innovations. A robust long-run covariance
matrix estimation is proposed, which can be of independent interest. An application
on detecting structural changes of the U.S. unemployment rate is considered to illus-
trate the usefulness of our method.
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1 Introduction

Statistical inference of structural breaks in mean is an important subject to study, and in-
volves estimating the trend functions, detecting and locating abnormal changes and making
inferences on the break estimators. Breaks may arise in various applications in different
fields, such as in network analysis, biology, engineering, economics and finance, among oth-
ers. Specific examples are anomaly of network traffic data caused by attacks (Lévy-Leduc
and Roueff (2009)), recurrent DNA copy number variants in multiple samples (Zhang et al.
(2010)), abrupt changes in household electrical power consumption (Harlé et al. (2016)) and
minimum wage policy changes analysis (Chen et al. (2020)), etc. In those data scenarios,
temporal and cross-sectional dependence for large-dimensional data might pose challenges
to statistical analysis.

To formulate our problem, we assume that observation vectors Y7, Y5, ..., Y, follow the

model,
Yi=plt/n)+e, t=1,2,...,n, (1)

where (€;); is a sequence of zero-mean p-dimensional stationary noise vectors and u(-) =
(a (), pa(s)s oy ()T 1 [0,1] — RP is a vector of unknown trend functions. In this way,
the data generating process is trend stationary. We will model breaks occurring on the

vector of trend functions u(t/n). Notably, we assume that the trend function satisfies

plu) = F0) + 3L @

where K is an unknown integer representing the number of breaks; f(-) (f(-) = (fi(+), fa(*),
oo [o(4)T 1 [0,1] — RP) is a vector of smooth trend functions; ws with 0 < u; < uy <

... <ug, <1 are the time stamps of the change-points with |u; — u;| > b, where b is the



bandwidth parameter; and 7, € R? are the jump vectors with size |Vk|oo (|.|oo is the infinity
norm) at point ug. Note that the jump sizes are characterized in terms of the infinity
norm; therefore, we do not require simultaneous jumps for all entities 1 < j < p, and
some coordinates of 4, can be zero. Namely, we will focus on the largest jump (i.e., |k|oo0)
happening in the cross-sectional dimension for any fixed time point k (cf. Theorem 2), and
this is of particular interest when the jumps are sparse. In case many series jump at the
same time, we further propose a refined method, which aggregates all the contemporaneous
jumps (cf. Theorem 4). In most of the change-point settings, the smooth part of the trend
functions is zero (i.e., f = 0). This means that the trend functions are piecewise constant
for each coordinate. In contrast, our model is more flexible and realistic, since we allow the
mean functions to vary smoothly instead of staying at the same level between break-points.

The goal of this paper is to provide theory for structural break inference. We first
detect the existence of breaks. We then deliver theorems to test for the existence of breaks,
identify their change-point wy, calibrate sizes of the breaks, i.e. |Vk|eo, 1 < k < Ky, and
construct confidence intervals for the estimated break points. Our theorem allows us to
consider a multiple change-point test based on a threshold method on the maximum of
generalized MOSUM statistics. We derive the asymptotic distribution of the test statistics
including estimated breaks sizes, and the estimated breakpoint locations (cf. Theorem
3, 4 ii) ). The results provide solid foundations for conducting statistical inferences for
multiple change-point estimation in high dimensional time series. Moreover, we consider a
further aggregation step targeting at simultaneous breaks, and also this step gives us finer
consistency rates of the break location estimation.

Multiple change-point detection can be classified into two categories, i.e. model se-
lection and testing. The traditional model selection method, for example BIC, has the

drawback of computational inefficiency, which can be improved by some modified penaliza-



tion procedure, see for example, Killick et al. (2012), and LASSO (Least absolute shrinkage
and selection operator) type penalization such as by Tibshirani and Wang (2007), Li et al.
(2016) and Lee et al. (2016). Regarding multiple change-point detection via testing, a
classical method utilises an exhaustive search, which examines all the possible breakpoints
combination. An exhaustive search is very time consuming and some dynamic technique
and improved versions are invented, see for instance Bai and Perron (1998, 2003) and Jack-
son et al. (2005). A very popular approach is the binary segmentation introduced in Scott
and Knott (1974). However its power might suffer for certain alternatives. This drawback
can be handled by the wild binary segmentation algorithm developed in Fryzlewicz (2014)
and sparsified binary segmentation as in Cho and Fryzlewicz (2015). Moreover, Fryzlewicz
(2018) recently introduces a bottom-up algorithm to overcome the disadvantage of the clas-
sical binary segmentation. Besides, Wu and Zhou (2019) propose multiscale abrupt change
estimation under complex temporal dynamics.

Detection using the MOSUM (moving sum) statistics is another popular way for mul-
tiple change-point analysis; see, for example, Huskova and Slaby (2001) for i.i.d data; Wu
and Zhao (2007) and Eichinger and Kirch (2018) for general temporal dependent data.
Preuss et al. (2015) deal with multivariate time series for structural breaks in covariance.
A MOSUM procedure has the advantage of computation simplicity and can avoid issues due
to multiple testing in multiple break inference. A possible drawback is that MOSUM intro-
duces a new bandwidth parameter. Such an issue can be dealt with through a multi-scale
MOSUM, which uses multiple bandwidths; see, for instance Meier et al. (2019). Eichinger
and Kirch (2018) provide a comprehensive theoretical analysis of multiple change-point
detection using MOSUM analysis including the distribution theory of the estimated break-
point. Our work can be viewed as a generalization of their work on the high-dimensional

case as we adopt a MOSUM type of statistics in our first step.



Change-point detection for high-dimensional time series has recently drawn a lot of
attention due to the increasing number of applications. In particular, we shall consider
the case of p — oo. Even in the simplest setup of a mean-shift model, large p may pose
challenge to change-point detection. It is common to consider aggregation, either over the
original time series or certain transformed statistics of individual time series and to convert
the problem to a one-dimensional analysis. For instance, targeting at sparse breaks, Cho
and Fryzlewicz (2015) propose a sparse binary segmentation which concerns an l;-based ag-
gregation with a hard threshold, and Wang and Samworth (2018) consider sparse singular
value decomposition based on the CUSUM (cumulative sum) statistics. Moreover, there
are a few other work looking at l,-based aggregation of statistic: Bai (2010) evaluates the
performance of a least square estimation of a single breakpoint with distribution theory
on the break location estimates without assuming cross sectional dependency; Zhang et al.
(2010) extend the method in Olshen et al. (2004); Enikeeva and Harchaoui (2019) and Liu
et al. (2019) regard the detection of change-points in a high-dimensional mean vector as a
minimax testing problem. For a single break point in time and targeting at sparse break
coordinates, Jirak (2015) studies a CUSUM type statistic for each coordinate and then
takes maximum of them, and asymptotic theory is provided to facilitate the simultaneous
inferences of the breakpoint estimation. Cho (2016) proposes a double-CUSUM algorithm,
etc. For a single change-point in time, distribution theory is still available in a few works,
see for example Bai (2010). However, Bai (2010) is only concerning cross-sectional inde-
pendent data. When it comes to multiple change points detection, the majority of the
aforementioned work focus on developing novel algorithms, and a complete distribution
theory is not readily available due to the complexity of the problem. An exception is Jirak
(2015). Compared to Jirak (2015), we are taking a different path in terms of an algo-
rithm using the MOSUM and an aggregation step with refined rates of estimator achieved.



We thus provide a new angle to conduct inferences in multiple change-point analysis for
high-dimensional time series.

It shall be noted that as there are already many novel algorithms developed, we do
not claim a total superiority of ours. The algorithm proposed here is a generalization or
modification of the existing methods, which facilitates us to obtain a complete theory and
good theoretical rates. Nevertheless, our aggregation step is different and complement to
existing algorithms. For example, one main difference with the aggregation step is that our
project is based on the estimates in the first step. Cho and Fryzlewicz (2015) and Wang
and Samworth (2018) use other approaches to find the best projection direction.

To summarize, we provide theory for a two-step multiple change-point procedure. We
prove consistency results as well as distribution theorems for breakpoint location estimation,
which is crucial for inference of breakpoints. The aggregation step can help us to achieve
good rates of the breakpoint estimation. We deliver general theoretical results that allow
heavy-tailed distribution and general spatial-temporal dependency assumption on the error
term, and we do not require the mean function to be piece-wise constant (i.e. f =0). The
detection procedure is not computationally expensive, as we only need to evaluate the
statistic once for each point ¢. Additionally, we consider the estimation of the long-run
covariance matrices. This paper is structured as follows. Section 2 constructs a test and
delivers its asymptotic performance for testing the existence of change-points. Section
3 introduces the two-step algorithm for inference on break estimation. The associated
consistency and asymptotic distribution theorems are also covered in this section. Long-
run covariance matrix estimation is derived in Section 4. Simulation results are in Section
A in supplementary materials and an application on U.S. unemployment rate is given in
Section 5. Detailed proofs are presented in Section B in the supplementary materials.

T

Notations: For a constant k € N and a vector v = (vq,...,v4)" € RY we denote



olk = (X0, [oi)V*, v] = [v], and [v]e = max;<g |v;]. For a matrix A = (a;j)1<i<m1<j<ns

we define the spectral norm |A|, = max,=1 |[Av| and the max norm [A|nax = max;; |a, ;.
For a function f, we denote | f|. = sup, |f(x)|. We set (a,) and (b,,) to be positive number
sequences. We write a,, = O(b,,) or a,, < b,(resp. a, < b,) if there exists a positive constant
C' such that a, /b, < C(resp. 1/C < a,/b, < C) for all large n, and we denote a,, = o(b,)
(resp. a, ~ by), if a,/b, — 0 (resp. a,/b, — 1). For two sequences of random variables

(X,,) and (Y,), we write X,, = op(Y},), if X,,/Y,, — 0 in probability.

2 Testing the existence of change-points

In this section, we provide a test for the existence of breaks. Considering our observations

generated by the model in (1) and (2), we would like to test the null hypothesis,

7‘[02 ’)/1:’)/2:...:")/](0:0,

which corresponds to the case of no breaks, against the alternative of the existence of at
least one break i.e. Ha:3 ke {l,---, Ky}, st. A #0. It shall be noted that we do
not need to assume the number of breaks (Kj) to be bounded, but to rather restrict on the
separation between breakpoints (c.f. Assumption 2.4).

In Subsection 2.1, we derive our test statistic. Its asymptotic property is given in
Subsection 2.2. In Subsection 2.3, we derive the performance of the test based on Gaussian
approximation, which provides the theoretical foundation for calculating the size and power

of the test.



2.1 Test statistic

In this subsection, we introduce the test statistics and some intuition. Recall that our
trend function pu(u) can be disentangled into two parts, namely a smooth transition part
f(u) and a jump part 7;1,>,,. We can define the jump vector at point u as a gap between
the right-side function p((u) and the left-side function u()(u), which is

J(u) = p(u) — pY(u), where we define pu"(u) = %m p(t) and  pu(u) = ltle p(t).

Due to the smoothness of the constitutes of f(.), the gap function J(u) = 0 when there is
no jump, and J(u) = v, when u = uy. A natural way to test the existence of change-points
is to check whether the gap is zero (i.e. J(u) = 0). To this end, we need " (u) and 4" (u),
which are estimates of x (1) and u®)(u). We propose to adopt the local linear estimation
technique, see Fan and Gijbels (1996).

The local linear estimates of 4()(u) and 4 (u) at the point u = i/n are of the following
weighted form

i+bn

[L( Z/?’L Z Wi— tY;t and :&( = Z/n Z Wy — zY;a (3)
t=i—bn t=1+1
with weights
w; = w;p = wp(0,4/n), i>1, wy=0. (4)

The weight functions are defined as

K@= WS == 0S$0] o



where K(.) is a kernel function and b is a bandwidth with b — 0 and bn — oo. It is worth
noting that the estimator in (3) is equivalent to adopting a one-sided kernel function, i.e.
K (u)1,>0 to fix the boundary estimation issue for the kernel estimation method.

If there is no jump around the time point v = i/n, the gap estimate j(z/n) = [Lgl) — [LET)
would be small for all coordinates. Otherwise if for some entity 1 < 5 < p, the gap estimate
|J;(i/n)] is large, there might exist a jump around time i/n at coordinate j. Note that the
test statistics is in fact of a MOSUM type, and we replace the uniform kernel for MOSUM
by a local linear one to adapt for slowly varying trends f(u) in (2).

To conduct the breakpoint detection with p — 0o, we consider the maximum of the gap
statistics. Furthermore, we need to standardize our test statistics in order to get a regular
limit distribution. To obtain the long-run variance matrix involved in the standardization,
we need to specify the error process, as in model (1). We would like to make a general
temporal and cross-sectional dependence assumption. This is a crucial issue, since for time
series data, dependence is the rule rather than the exception. Specifically, we let

€ = Z Akt (6)

k>0

where 7, € R? are independent and identically distributed (i.i.d.) random vectors with
zero mean and an identity covariance matrix. Ay, k > 0, are coefficient matrices in RP*?
such that € is a proper random vector, and p < p < ¢,p, for some constant ¢, > 1. If
A; = 0 for all © > 1, then the noise sequences are temporally independent; if p = p and
matrices A; are diagonal, then the sequences become the model in Bai (2010), which is
spatially independent. The VMA (00) process is very general and includes many important

time series models such as a vector autoregressive moving averages (VARMA) model, i.e.
s s t
(1 — Z @]Bj)Xl = Xz — Z ®in—j = Z‘Ekni—k7
j=1 j=1 k=1

10



where ©; and =, are real matrices such that det(1 —>7°_, ©;2) is not zero for all [2] <1
and B is the backshift operator.
Correspondingly, we define the sum of the coefficient matrix to be S = Zkzo Apg. The

long run covariance matrix for the error process is
=255, (7)
We denote ¥ = (0;,), 1 <i,j < p, and

A= diag(ai/f, 0;7/22, o), (8)

L 2y %
Following the previous intuition of the effect of jumps on the gap statistics J (.), we consider
the test statistic

T,= max |Vilo, where V;=A"'(a{"—a"). (9)

bn+1<i<n—bn

We adopt a supreme type of statistics as it shares good property under certain alternatives,
see for example Bai and Saranadasa (1996). However, we do not claim the strict superiority
of our test statistics. When the majority of locations exhibit simultaneous jumps, an [y
type statistics tends to have better power.

We exclude Y; in V;, because that the weights in front of Y; would be the same for
the right side and the left side estimator, and will be canceled when taking the difference.
Note that we consider the normalized statistic as multiplying the jump estimates J (i/n) =
ﬂgl) — /lz(r) by A~! since the long-run variances o;; for different coordinates 1 < j < p can

be very different. We refer to T;, as an infeasible test statistic since A is unknown. The

estimation of A is deferred to Section 4.

11



2.2 Properties of the test statistics

We shall show the asymptotic properties of our test statistics 7), in (9) in this subsection.
First we analyze the mean of the normalized jump estimators, i.e. EV;. Intuitively, we can
decompose the level of our jump estimator EV; into two parts, one is the commonly encoun-
tered bias term for the nonparameteric kernel estimators of the smooth trend functions,
and the other is induced by jumps on the deterministic trend, which is denoted as d;. Recall
the definition of w; in (4) for i = 1,2,...,bn, and w; = 0 for i = 0 and i > bn. We denote
the location of breaks as 7, = nuy and €2; as a set of indices indicating the break locations
within the bn neighborhood around time ¢, namely €2; = {k| li— 1] <bn,1 <k< KO}. If
7, — 7; = n(u; — u;) < n, for any i, j, then for large n, the cardinality of €2; is at most one,
i.e. |©;] < 1. Actually this condition can be relaxed to min<;zj<k, |7; — 7;| > bn. For a

time point ¢ where ; # (), we define the weighted break sizes to be,

Ji—Tg|

d;=(1- Z w)A g, k= argmincq [i — 75, (10)

t=1

and for the rest of locations i, let d; = 0. We further stack d; over all breakpoints that
are of interest, which is denoted by d = (1, dpyios- - -, d)_p,) - It should be noted that
under the null, d = 0.

We denote the smooth part of the local linear estimate as

ie1 i+bn
fz'(l) = Z wi—f(t/n) and fz‘(r) = Z we-if (¢/n).
t=i—bn =i+l

By Fan and Gijbels (1996), under some smoothness conditions, the bias part of the es-
timated smooth functions would be of the order b?, which goes to zero by assumption,

i.e.

max AT/ — )] = O0P). (11)

n+1<i<n—bn

12



Given the definition of our model Y; = u(i/T) + €;, d; can be expressed as
di = B{ATN (0" = i) = (17 = f)} =B{vi - A7 (7 = 0} (12)
Combining (11) and (12), EV; can be approximated by the part induced by jumps s, as
BV — dilo = A7 (/7 = )] = O?). (13)

Let us now consider the V; — EV; part. We observe that the centered statistics can be

expressed as a weighted sum of the error term, namely

i—1 i+bn
V; — EV; = Z wi_lA_lel — Z wl_iA_lel. (14)
l=i—bn l=i+1

To approximate its distribution, we introduce a scaling matrix for variance of the limit
distribution. Recall S =}, ., Ay, and define a block matrix G° = (G7))pny1<i<n—bn1<i<n €
R(=20)pxnp wwith components as p x p dimension matrices,
. w; ALS, it 1—bn<l<i—1,
il = (15>
—w ATES, i i+ 1<1<i+bn,
and elsewhere zero. Let z be a Gaussian vector in R™ with zero mean and identity covari-
ance matrix. We set G7_ to be (G5, G5y, ..., Gy,). It can be shown that G z has a similar
covariance structure as V; — EV;. We shall use the distribution of |GZ,§|OO to approximate
the distribution of |V; — EV;|«. Combining this approximation with the bias term in (13),
we shall expect that for each time point 7, our normalized break test statistics can be

approximated by the maximum of a Gaussian vector centered at d;, i.e.,

P(|Viloo < u) = P(|d; + G 2|oo < u).

13



We now let the statistics go over all the time points, and recall T,, = maxp,+1<i<n—bn | Vi|oo-

Then we shall expect

P(T, <u) = P(ld+ G°2| < u), (16)

and equivalently
P(T, <u) = P(|d+ Z|s < u), (17)
where Z = (Z), 1, Zpior- s Z_p,) " and (Z;)pns1<i<n—bn is a sequence of centered Gaus-

sian vectors in RP with covariance matrices Cov(Z;, Z;) = @, ; of the following form:

Qij=wi;,AT'SAT" and w;; = Zw“_”wu_”sign(i — D)sign(j —1). (18)

=1

To see the equivalence between (16) and (17), let
Q = (Qi,j)bn+1§i,j§nfbn = GOGQT-
Then Z is a Gaussian vector with zero mean and covariance matrix (). Note that
d o d o
Zy =G}z and Z=G°z (19)

This transformation from G°z to Z is to show that the involved Gaussian process only
depends on the long-run covariance matrix 3 and the weight functions. We note that
Z are not element-wise independent, but with dependency governed by G°. The above

argument will be rigorously formulated in Theorem 1 in the next subsection.

2.3 Gaussian approximation

In this subsection, we provide the formal theory supporting our test. We first present
necessary assumptions. The following is to guarantee the smoothness of the trend functions

pj(u) when no break occurs.

14



ASSUMPTION 2.1. Function f; € C*[0,1] with maxi<j<p |filoe < ¢f, maxicjcp |f]]oo < 5

for some constant cy > 0.

Additionally, to ensure the property of our kernel estimation, we need conditions on the

kernel function.

ASSUMPTION 2.2. The kernel K(.) > 0 is symmetric with support [—1,1], assume |K|y <
oo and fjl K(x)dx = 1. Also assume K(z) has first-order derivative with |K'| < 00 on

(0,1). Let b — 0 and bn — oo. Denote k; = fol 2 K (z)dx. Assume K? # koko.

We also set conditions on the regularity of the long-run covariance matrix and the

dependency strength of the noise sequence.

ASSUMPTION 2.3. (Lower bound for the long run variance) o;; > ¢y, 1 < j < p for some

finite constant c, > 0.
We need enough separation between adjacent breakpoints.
ASSUMPTION 2.4. (Separation) Assume mini<; j<x, |7, — 7;| > bn.

It is worth noting that Assumption 2.4 implies that the number of breaks K shall not
exceed the order 1/b.

ASSUMPTION 2.5. (Dependence strength) maxi<j<p Yy | Ak j. 2/0%2 < ¢,(iV1)~", where

B > 0 is some constant and Ay j. is the jth row of Ay.

Assumption 2.5 is a very general spatial and temporal dependence condition and em-
braces many interesting processes. It requires an algebraic decay rate of the temporal
dependence. However, the cross-sectional dependence does not need to be weak; and in

fact, it can be strong such that it has a factor structure. We provide an example as follows.
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EXAMPLE 1. Assume that 7, n; € RP are i.i.d random vectors with zero mean and covari-
ance matrix I,. Let

¢ = Fy+ Z;, with Z; = ZAknt—k and F; = va,:ng_k, (20)

k>0 k>0
where Ay = diag( M1, Mep), © = (v,...,v,) " and fr. = (fr1,. .., frp) - Here Fj is the
factor term and Z; ; are independent for different j. Then the long-run variances for Z; ;
and Fj are 075 = (3450 Mey)” and oy = | 32,0 fil507, respectively. If for some constant
c> 0,

D Pulfo] < i and D | ilelvl/ow < i, (21)

k>i k>i

then Assumption 2.5 holds with 3 = a. To see this, we note |Ag;.|o = (A7, + | fxl301)"/2,
and 0;; = 0% ; + 0F;. Hence,
o 1/2 | 1/2 o 172
DAkl < Y (gl + sl fele) < cim* (03] + 07ff) < V2ei"0}7
k>i K>i

O

ASSUMPTION 2.6. (Finite moment) The innovations n;; are i.i.d. with i, = ||m1llq < 00

for some q > 4.

ASSUMPTION 2.7. (Sub-exponential) The innovations n;; are i.i.d. with p, = Eetmil <

00, for some ag > 0.

Assumptions 2.6 and 2.7 put tail assumptions on the distribution of the noise sequences.
Given the above-mentioned conditions, we provide the main Gaussian approximation theo-
rem, which is essential for the asymptotic distribution of our test statistics 7. Our theorem

extends the Gaussian approximation theory in Chernozhukov et al. (2013a, 2017), which

16



build on the Stein’s method and the anti-concentration bounds. Markedly, our theory is
developed for modeling dependent data. To this aim, one important technical non-triviality
lies in handling the spatial-temporal dependency of the trend stationary high-dimensional
processes. We derive the corresponding concentration inequalities based on m-dependence
approximation of the underlying processes. Compared to the existing results on Gaus-
sian approximation for time series, for example Zhang et al. (2017), our setting works for
non-centered Gaussian approximation that accommodates our interest for time series with

breaks.
Theorem 1 (Gaussian approximation). Under Assumptions 2.1-2.5,
(i) if Assumption 2.6 holds, and np(bn)~9?(log(np))3¥/? = o(1), then for
A = (bn)"Y%log"%(pn) + (bn) P/C+310g? (np) + 672! *log! (np),
we have

sup [P(T, < u) = P(ld + Z|se < u)| A+ ((np)*?/(bn)) " log(pn),

ueR
(ii) if Assumption 2.7 holds, and (bn) ! (log(np))™&{7:20+5)/5} = o(1), we have
5161% ‘P(Tn <u)=P(d+ Z|w < u)‘ S A,
where the constants in < are independent of n,p,b.
If in addition
b’nlog(np) = o(1), (22)

then under both cases, we have

sup [P(T,, < u) — P(|d + Z|o < w)| — 0. (23)

ueR
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REMARK 1. (Allowed dimension) One key theoretical insight is that we explicitly show the
trade-off between the tail assumption of the innovations and the allowed dimension of the
time series p relative to the sample size n in the above theorem. In particular, when we
have exponential tail assumption on the distribution of the innovations, we allow an ultra
high dimension setup indicating p to be at an exponential rate with respect to n. And
when we have only finite moment assumptions, we can allow p to be at a polynomial order
with respect to n. Specifically, for Theorem 1 case (i), we allow p to be of some polynomial
order of n, and its order depends on the value of ¢q. For some 4 > 0 and 0 < 15 < 1/2,
assume p < n”* and b < n~"2. If vy < (1 —1n)q/2 — 1 and vy > 1/5, then (23) holds. Tt
is easy to see that the bigger the moment ¢ is, the larger the allowance of the dimension
p. The moment condition 2.6 depends on ¢ which characterizes the heavy tailedness of the
noise, larger ¢ means thinner tails. For case (ii), we can allow p to be exponential in n, i.e.
the ultra high dimensional scenario. For instance, for some v, > 0 and 1/5 < 1, < 1, we
can set p < " and b < n™"2. If v; < By — 1 and vy max{7,2(1 + 3)/8} < 1 — vy, then
(23) holds. O

It is not hard to understand the size and power implication of Theorem 1 to our test.
Under the null hypothesis, we have d = 0, then for any prefixed significant level « € (0, 1),

we have the critical value of our test as g, i.e. the quantile of the Gaussian limit distribution,
Qo = ig(f){r P(| 2|0 > 1) < al. (24)
rZ

As from the Gaussian approximation result in (23), we have the approximated sizes of the

test statistics,
P(T, > ¢a) = P(|Z]0c > qa)| — 0.

We shall reject the null hypothesis at the significant level «, if the test statistics exceed the

critical value i.e. T, > q,.

18



To evaluate our testing power, consider the alternative that if not all v, = 0, then
d is non-zero. We have the following corollary for the power, which is a straightforward

consequence of Theorem 1.

Corollary 1. (Power) Under conditions in Theorem 1 (i) or (ii). The testing power f3,
satisfies

604 = P(|d+ Z|oo > QOc) + 0(1)

Thus, we can see that the power of our test would depend on the vector d. The size
of it is determined by the true jump sizes i.e. xs. Since the covariance matrix for Z is
Q = (Q;;), where Q; ; = @; ;A 'SA™! with w; ; defined in (18). It can be calculated that
@i < (bn)~L, therefore |Z|., = Op((bn)~Y/*log(np)), which tends to zero by Assumption
2.6 and 2.7. Thus if |d| > (bn)~Y2log(np), Bo — 1 by Corollary 1.

3 Estimation and inference of breaks

In this section, we show how to estimate the number of change-points, the time stamps, the
spatial coordinates and the sizes of the structural breaks. We summarize the key steps of the
adopted two step procedure for the multiple change-point detection. The main reason for
a two-step estimation is to achieve an optimal rate of consistency for our break estimation.
The first step can be regarded as an extension of the MOSUM I, aggregation. Namely,
in our first step, we conduct a “rough” estimation though a MOSUM type statistic as in
Equation (9), and we can draw a conclusion on the existence of a break. In case it exists,
we obtain a “rough” estimate of the change-points locations. In the second step, we refine
our jump estimates based on a one-dimensional aggregated time series. The aggregation

can be viewed as a projection using information on the jump estimators from the first step.
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To be more specific, within each time region around the kth breakpoint, we can aggregate
data by a weighted sum of different coordinates whose weights are determined by the
first step jump size estimators (9;). Instead of looking at the biggest break at one time
point, the aggregated change-point statistics carry more information regarding significant
jumps across contemporaneous locations, and would thus provide better precision. In the
following, we introduce the first “rough” estimation step and its properties in Subsection
3.1. We further improve the first step in Subsection 3.1 through an aggregated statistics ,

which is proposed and analyzed in Subsection 3.2.

3.1 The “rough” estimation step

We define the sizes of the breakpoints at time £ as

|A717k’oo‘

Here, we normalize 7, by the long-run standard deviations for the same reason as V; in (9).
Intuitively, the noise fluctuation levels for different locations can be very different, and at
one location, a break can be significant due to purely high noise level without normalization.
We define the minimum size of breaks over time as

§° = min [A e (25)

1<k<Kq

In the following, we outline the steps of our testing, detecting and estimation procedure.
Step 1. For significance level «a, we test the existence of jumps based on the critical value
¢o in (24). If we find no significant breaks, then we cannot reject the null H,. In case
our test statistic exceeds the critical value, we reject Hy and acknowledge the existence of

breaks, then we proceed to step 2.
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Step 2. To detect the change-points, we collect all the time stamps with the jump statistics
|V | exceeding a threshold value w', namely, Ay = {bn +1 <7 <n—bn: |V > w'},
where V. is defined in (9). Let 71 be the time point 7 in A; that maximizes the test
statistics |V;|e. We further eliminate a 2bn neighborhood of time points around 7; from
A, to create Ay. Then we find the next point in Ay that maximize |V; |, and repeat the
same operation until the set Ay is empty. Namely, for £ > 1, we let the kth estimated
break point be denoted as 7, = argmax, ¢4, |Vr|oo and App1 = Ap \ {7 : |7 — 7| < 20n}.
We denote the maximum number of breakpoints as Ko, with Ky = maxg>1{k : Ap # 0}. It
is worth noting that we have chosen 2bn to exclude both bn neighorhood of 7 and 7.

Step 3. Given the detected breakpoints in Step 2, we calculate the break sizes over time.

We denote the window size to be M = bn,

~ ~ (1 ~(r ° . —1~
Tk = M(Ak)fM - N(fk)+M and 0° = min [A™ e (26)
1<k<Ky

It is worth noting that in this algorithm, we only need to calculate the gap statistics
|V, | once for each point. Hence, it is not time consuming regardless of the true number of
breakpoints. In Step 1, we test the existence of the breaks. In Step 2, we use the estimated
|V, |s for all the points from bn + 1 to n — bn and select the points that are beyond the
threshold w. Intuitively, the points in A; would contain the break indices, as well as points
in their neighborhood where estimates are contaminated by the breaks. Therefore in Step
2, we find the local maximums and discard points around them. In Step 3, we estimate the
sizes of the change-points and calculate their minimum values.

In the following, we shall provide consistency results of estimates of the break numbers,
locations and break sizes in Theorem 2; and derive asymptotic distribution of break sizes
in Theorem 3.

We need to first impose the minimum jump size condition on the break size as
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ASSUMPTION 3.1. Assume the break size satisfies 6° > max {/log(pn)/(bn), b}.

It can be seen that the break size requirement is related to the dimensionality of the
time series, the number of observations available and the bandwidth parameter. The larger
the sample n, the smaller the requirement for 6° due to the better approximation of the
trends. In the following theorem, we show that we would asymptotically obtain the right
number of breaks. Moreover, we can bound the errors of the estimated break locations and
the break sizes. The threshold w' shall be set as a high quantile of its limited Gaussian

distribution to ensure the consistent estimation of the breaks.

Theorem 2. We assume conditions in Theorem 1 (i) or (i), Assumption 3.1, and (22)
hold. If min{0°® —w',w'} > 2¢/ \/log(pn)/(bn), where c,, is the constant defined as the limit

(bn >0 w22 — ¢, then
(i) P(Ky = Ky) — 1.

(i4) under Theorem 1 (i), |7 — Tee| = Op{(np)¥9/6°?}, and under Theorem 1 (ii), |7 —

Tie| = Op{log?(np)/0°%}, uniformly over k, where k* = argmin; |7, — ;]

(i) A2 (Ak — Ye)|oo = Op((bn)~Y2log(np)'/? + b), uniformly over k, which indicates

10° — 6°| = Op((bn)~/2log(np)'/? + b).

Result (i) indicates that the number of breaks can be consistently estimated, (ii) suggests
that the estimated break dates uy can be consistently determined in view of u; = 74 /n and
(iii) shows that the break sizes can be consistently recovered. The convergence rate of the
break sizes dependents on the bandwidth b, sample size n and the dimension of the time
series p. It is worth noting that the bias is of order b in (iii), as the difference is taken with
a gap of 2M as in equation (26). It shall be noted that the consistency rate of 75 depends

on the break size 0°, which depends only on the maximum break size for any fixed time.
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Therefore having several large breaks simultaneously would not improve the break size
estimation. With respect to the condition min{6® — w', w'} > 2¢, \/log(pn)/(bn), relative
to the summary in the Table 1 in Cho (2016), our break size §° is comparable up to the

1/2

weakest condition 6°(nb)'/? — oo up to a logarithmic factor. Moreover, when p = 1, our

requirement of breaksize is similar to the rate as in Theorem 3.2 in Wu and Zhou (2019),
namely 6° > y/logn/v/nb.

Given the consistency of the breakpoints, we can obtain a distribution theory that
facilitates us in making inferences on the break sizes. Let Z be a Gaussian vector in R?

with zero mean and covariance matrix
bn

Q = Qonsrns1 =2 wiAT'EAT (27)

t=1
Theorem 3. (Break size inference) Assume conditions in Theorem 2 and b3nlog(np) =

o(1). We have

sup [PIA ™ (3 — 1 )|oo < 1) = P(|Z]oo < u)| = 0, where k* = argmin,|7;, — 7.

ueR

This theorem indicates that the maximum of the difference between the estimated jump
size 4, and the true jump size v, can be approximated by the maximum of a Gaussian
random vector with the same asymptotic variance-covariance structure. Based on Theorem

2 (ii) and Theorem 3, we can construct joint confidence interval for vz« ;. We set

a=P(Z]e>q) and 0= (0} 035, ...0l)T, (28)

1 Ypp
some o > 0. Then as n — oo with probability close to 1 — «, we have

1/2 | « 1/2 | - .
—qajé- + Vg < i S qu,é- + Vk,j vj. (29)

Theorem 3 can be extended to hold uniformly over k by stacking the statistics over all

ks. In addition, we see that Theorem 2 and Theorem 3 are closely connected in the sense

that we can reach the same threshold by stacking 4, over all ks.
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3.2 The refined aggregation step

The estimation in the first step is only driven by ||, i.e. the maximum size of jumps at
a time point 7. Therefore it is only sensitive to the biggest jump across all the time series
at the same time. The [, type test potentially have more power for certain alternatives
than the I, type statistics, see for example Bai and Saranadasa (1996). However, if the
majority or all of the entities exhibit simultaneous jumps, the supremum statistic tends to
have lower power than the [ statistic.

In case there are multiple simultaneous time series jumps, it would be beneficial to
modify our procedure to aggregate all of the series with a jump. This enlightens us to
propose a two-stage method: first, we follow the steps in the previous subsections to detect
the “rough” timing of the jumps and the estimated jump sizes; second, for each bn neigh-
borhood of a change-point estimate 7, obtained from step one, we update the change-point
estimates according to a newly aggregated time series. The time series is calculated with
a weighted sum of simultaneous observations corresponding to significant jump locations
and the weights are based on the jump size estimates in the first step. The aggregation
returns a one-dimensional time series with richer information on the cross-sectional jumps.

We denote S, to be the set of series that jump at location 7, that is

Sp={1<j<p|mw,; #0}, (30)

where 7 ; is the jth coordinate of ;. Detailed steps of the aggregation are formulated as
follows:
Stage 1. Apply Steps 1-3 in Subsection 3.1 to obtain 7, and A, k = 1,2, ..., K. For some

w' > 0, let the estimation of Sy, be
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In practice, w' can be chosen to be large enough to ensure that we can detect all the jumps
with probability 1 as in Theorem 2.
Stage 2. For |t — 7%| < 2bn, we let

Xe = (A'4); (A7), (32)
JESK
Note that after the modification, for all the jump locations, the new time series X; would
only contain positive sized jumps i.e. Zjegk(A’l'?k)?.ThiS step can be understood as
a projection of the high-dimensional observations A~'Y, according to the direction of
A~'4,(j € S;). This is similar to the idea of Wang and Samworth (2018).

Based on the aggregated time series X;, the refined change-point locations can be de-

tected through a CUSUM type of test statistics, for k = 1,2, ..., K,

T +2bn t—1

t—Tr + 2b 4b 1
7= argmax( 3 X, X:XQ¢P% nr

s=F,—2bn 5=, —2bn
(33)

After we update the break points estimation, we can construct confidence intervals for
the updated breakpoints estimates 7. We denote the long-run correlation matrix to be
(65;)i; = A"SAY, where X is the long run covariance matrix for ;. We let ¥y = (67 )ijes,
be the sub covariance matrix corresponding to coordinates in S at time 75, and let the
standardized significant break sizes 3, = (A~ 'y)ies,. We define two objects involved in

the limit distributions of the breaks, i.e.,
ac=l3 and G =3 . (34)

Then ¢} is the long-run variance for the sequence >, s (A"'y;);(A™"e;);. For the aggre-

gated jump estimation, we alternatively define the minimum jump size across different
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locations and time points as

T ; ; AL .
6! = min min|(A™ye)sl.

Then 6" < §° and it functions similarly as §° to capture the identifiable jump size of the
time series. We shall put the same assumption on 4 as on §°. It is worth noting that &' is

the minimum jump size to ensure the consistency of our break estimation.
ASSUMPTION 3.2. Let 6" > max {/log(pn)/(bn), b}.

In the following corollary, we show that we can consistently recover the locations of the

series with a jump for each change-point. It can be directly derived from Theorem 2 (iii).

Corollary 2. We assume conditions in Theorem 1 (i) or (ii) hold, and Assumption 3.2.

If 6T /2 > wt > (bn)~Y2log(np)/? + b, then we have
P(Si =Sk, 1<k <Ky — 1.

In addition, we provide a theorem that allows us to make inference on the estimated

break-dates 7.

Theorem 4. (Aggregated break estimation) Assume conditions in Corollary 2, and that

for some constants cy,cy > 0,
c < )\maX(AleAfl)/)\min(AleAfl) < co. (35)

Recall definition of a, and ¢, in (34). Then we have for any fized 1 < k < Ko,
= Op(c¢/ai)-
(i1) In addition, if Assumption 2.5 holds with 8 > 1, and 1 < ¢? /a2 < bn, then we have

(1) |75 — T~

Tk — Tk LA (s /ax)*argmax, (=27 |r| + W(r)),

where W(r) is a two-sided Brownian motion. That is W(r) = Wy(r), if r > 0, and

W(r) = Wy(=r), if r < 0. Wy, Wy are two independent Brownian motions.
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REMARK 2. We shall note that the consistency rate of 7, is improved compared to the
results for 7 in Theorem 2 ii). a; which is an Il aggregation of simultaneous significant
break sizes, plays a role in the rate of convergence of 7. For instance, if we assume that
there are s breaks which are of size § > 0 in the cross-sectional dimensional, then a; = s62.
If moreover there is no cross-sectional correlation, i.e., Sp =1 , then we may expect 7 to
be consistent so long that 1/(s6%) — 0, while 7 can be not consistent. Thus the rate of
7 will be better than 7. Moreover, the long-run variance also plays a critical role in the
rate of convergence. For example, when the variance part of the limit distribution satisfies
¢ < ]ikbak, if \ikb/ak = o(1) then by Theorem 4 (i), we have 7, — 75 in probability.
This corresponds to the insight of Bai (2010) and Hansen (2000). We can also see that
when the breaks are truly sparse in the cross sectional dimension or the break size for each
time series is very small, the [ aggregation cannot improve the performance compared to
the previous step. Also when there are strong cross-sectional dependence [, aggregation
will not improve the break estimation performance. Moreover, we also need the aggregated
breaksize to shrink to zero (1 < 7 /a2) to obtain the limit distribution. If ) is a d-banded
matrix, |§]k\2 < (\ikll\f}k]oo)l/z < d. We can derive that |7, — 7| = Op(d/ay).

O

To illustrate the insight of Remark 2, we compare the performance of a simple model
with A/(0,0.1) and one breakpoint placed at 75 = 50. Figure 3.2 shows the histogram of
7 — 19 and T — 7y respectively. The jump-size for all breaks are the same, with the value
1.64/log(np)(19)~"/3. As the dimension p grows, we see the significant improvement of the
performance of 7 relative to that of 7.

From Theorem 4, with estimates of aj and ¢, we can construct a 100(1—«)% confidence

interval for 7:

(%k o Lqulfa/2J - 177:/6 + LqA/a/2J + 1)7 (36)
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Figure 1: Histogram of 7—7y(left) and 7—7(right) for n = 100, p = 10, 30, 100, 150, K = 1.
The number of breaks in the cross-sectional dimension are s = 1,5, 20, 30 respectively, and
there are 100 simulation samples. (a) describes the case with p = 10,s = 1; (b) describes
the case with p = 30, s = 5; (c) describes the case with p = 100, s = 20; and, (d) describes
the case with p = 150, s = 30.
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where ¢;_, 5 (¢;,/2) is 1 — a/2 (a/2)th quantile of the limit distribution of the break point
Tr, 1.e. argmax, {—2"ta|r| + ¢.W(r)} and q,/2(d)_,/») are estimates of the quantiles. ||
denotes the floor function. ¢;_, , (¢, /) can be calculated following Stryhn (1996). Alter-

natively, we can also simulate the critical values.

4 Long-run covariance matrix

In the previous sections, we assume that ¥ is known. However, this is unrealistic in practice,
as we mostly do not know the long-run covariance matrix. Thus, an estimation of the long-
run covariance matrix is needed in Gaussian approximation. A simpler version of this
problem was considered by Politis et al. (1999) and Lahiri (2003), who allow for a constant
mean of the random vector. More generally, Chen and Wu (2019) consider the high-
dimensional situation with smooth trends. However, this does not fit directly to our interest
due to the possible existence of the breakpoints. We then propose a robust covariance
matrix estimation motivating from the M-estimation method in Catoni (2012). It is worth
noting that due to the jumps, our method shall be different from the classical covariance
matrix estimation. Our long-run variance-covariance matrix estimation is complementary
to the recent article on high-dimensional robust matrix method under independence settings
in Fan et al. (2017).

First of all, to account for temporal dependency, we group our observations into blocks of
the same size m, for some m € N. We denote the number of blocks Ny = |(n—m)/m], and
the observation indices within a block k is set to be Ay = {t e N: km+1 <t < (k+1)m},

and we let

Sk = Z Y, /m,

te Ay

be the average observations within the block A;. Without jumps, a natural estimate of the
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long-run covariance matrix is

Ny

S (m/2)(& — 1) (& — &-1)T /N1

k=1
Note that we take the difference &, — &._1 to cancel out the trends, as the trend function
(+) is smooth, and the aggregated difference between two consecutive blocks can be shown
to be of order m/n, which vanishes when m/n — 0. However, this estimator can be
greatly contaminated by the jumps, as jumps are not smooth and cannot be canceled out
by taking difference. Thus a robust covariance matrix estimation is needed. We borrow
the framework of Catoni (2012), who considers a new robust M- estimation method. We

extend the method for estimating our long run covariance matrix.

We denote & = (§k1, Ek2, - - - ,{’w)T and let

Gijk = M(Eki — Ek—1,i) (Erj — E—1,5)/2, k=1,2,..., Ny. (37)

For some «;; > 0, we denote the M- estimation zero function of our variance-covariance

matrix to be

Ny
hig(w) = Ga,, (Giju — u) /N1, (38)
k=1
where ¢, (z) = a '¢(axr) and
(
log(2), x>1,
—log(1 — z + 22 /2), 0<z<1,
¢(x) = (39)
log(1 + = + 22/2), -1 <z <0,
—log(2), r<—1
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REMARK 3. Function |¢(-)| is bounded by log(2) and is Lipschitz continuous with the

Lipschitz constant bounded by 1. Also note that the function has envelopes of nice form,
—log(1 — z + 2°/2) < ¢(z) < log(1 + x + 2*/2). (40)
O

We set the estimates of the components of the long-run covariance matrix ¢; ; to be the
solution to h; j(u) = 0 (if more than one root, pick one of them). We can collect all the
estimates of the variance and covariances and organize them into the variance covariance

matrix,

Y= (Gijhi<ijep and A =diag(61), 655, 6,12, (41)

> T pp

_ . . _1/2_1/2
We denote i = 23y, ycpesn, /4 Oiik/N1 and let the a;; in (38) be aié ajé- (m/n)'/2.
Theorem 5. (Long-run variance precision) We assume that Assumption 2.5 holds with

B> 1.5 and let
¢ = AT (E = 2)A max.

Then for Ky finite, we have ¢ = Op(n~*log(np)) under either one of the following two

conditions:

(i) Assuming conditions in Theorem 1 (i), p < en® with v < ¢/8 — 1/2 and some ¢ > 0,

we take m = min{n!=8/(@=4) nl/2}
(i) Assuming conditions in Theorem 1 (i), we take m = n'/2.

By the above theorem, for the diagonal values, we have max;<;<, |6;; —0:;|/0i; = op(1).

Let Q be the same as Q in (18), with X therein replaced by S in (41). We denote 7 as
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the Gaussian vector with covariance matrix @, then by Theorem 5 and Lemma 3, |Z +d|s
converges to |Z 4 d|o in distribution. Thus, all previous results are still valid with ¥ as

well.

5 Application

As an application, we analyze the monthly the unemployment rate data in 20 U.S. states
(namely, Alabama, Arizona, California, Colorado, Florida, Georgia, Illinois, Indiana, Ken-
tucky, Michigan, Mississippi, New Jersey, New York, North Carolina, Ohio, Pennsylvania,
Texas, Virginia, Washington and Wisconsin). The data time span is from January 1976
to September 2018 (n = 513), and the data source is Bureau of Labor Statistics from
Department of Labor in the United States (https://www.bls.gov/). Figure 2 displays the
20 time series of unemployment rate. Although from a long time span and on an overall
level, we do not see obvious abrupt structural changes, it would be still of great interest
to consider detected changes induced by some well-known exogenous shocks, such as the
subprime mortgage crisis in 2007-2008. It is understood that there will be likely a smooth
cyclical trend associated with the unemployment time series, as they mostly rise during
a recession and fall during periods of economics prosperity, following the business cycle.
Further studies on whether the shock induced by recessions creates a significant structural
change in the unemployment rate should be performed. We select b according to a cross

_1/2-1/2

validation method, m = 10, and «;; = 7,70,

(m/bn)'/? which varies over different i,j.
We have used the estimated 0.999 quantile of the maximum of the Gaussian random vari-
ables (as in equation (19) with correlation matrix replaced by its estimator), which in our
case is estimated as 2.10. We refer to the guidance of the selection of tuning parameters

as in Remark 4 in the Supplementary materials.
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Figure 3 shows the estimated robust long-run correlation matrix using the method in
Section 4. One sees some significant values in the correlations between residuals in different
states. We can see that the correlations across different locations are not negligible, however
our method is robust against the underlying spatial-temporal dependency.

Figure 4 plots the estimated breakpoints and the confidence intervals around them. We
see that the estimated breaks 7 using the CUSUM statistics in Equation (33) pick up the
breaks earlier than the estimates obtained from the non-aggregated method i.e. 7. We
can see that our method can identify important dates such as the financial crisis period
starting in Jan, 2009. Moreover, 7, tends to detect earlier dates of structure changes than
the observed averaged peaks in the time series. Other time-points with significant jumps
detected are January 1977, October 1981, January 1991 and October 2001. There are a
few recession periods documented by the national bureau of Economics Research, namely
November 1973 to March 1975, July 1981 to November 1982, July 1990 to March 1975,
July 1981 to November 1982, July 1990 to March 1991 and March 2001 to November 2001.
All the break-dates of the unemployment structure happen during or slightly before the
recession periods, featuring a close relationship between the structure change of unemploy-
ment rate and the economic cycles. This implies that economic recessions indeed bring

significant structural changes in unemployment rates across all the states.
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Figure 2: Plot of Unemployment rate of 20 U.S. states
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Figure 3: Plot of estimation of the robust long-run correlation matrix; m = 10.
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Figure 4: Plot of estimated breakpoints 74(7;) (red lines) and their confidence intervals
(dotted black lines). 75 (upper panel), 7 (lower panel). The blue time series line represents

the average unemployment rate over states under consideration.
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SUPPLEMENTARY MATERIAL

A Simulation

In this section, we conduct a simulation study to evaluate the accuracy of our method. We

define w;; = p;(t/T). The discrete version of the model can be written as:

Ko
Yit = Uit + Z Vjit Lisr; + €t (42)

j=1
2:1, ’p’t:17... , M.
We use cross validation to select the bandwidth and the block parameter. The detailed

testing procedure is summarized as follows in line with the descriptions in Section 2.

Step 1 (Long-run covairance estimation.) We estimate the long-run covariance matrix
3. = (6,,) and its diagonal matrix A. We first calculate 6, in (37) and we let &, ;

be the solution of h; j(u) =0 as in (38).

Step 2 (Q— matrix relates to critical values.) We construct the block matrix Q= (Q”),

where Q” is @;; in (18), with ¥ and A therein replaced by 3 and A respectively.

Step 3 (Calculating critical values.) We generate i.i.d. Gaussian vectors Z(i), T =
1,2,... N, with the covariance matrix Q; and we obtain ¢, which is the empirical
(1 — a) quantile of the ]Z ()| over several samples and it can be viewed as an esti-

mate of ¢, in (24).

Step 4 (Testing the existence of jump.) We construct T, as T}, in (9) with A replaced
by A. We reject the null hypothesis that there is no jump at level « if T, is larger
than ¢,.



Step 5

Step 6

Step 7

Step 8

Step 9

(Detecting significant break-points.) Supposing that we reject the null in Step
4, we will continue with the following steps. To detect the significant jumps, we
construct |V|o for t = bn +1,bn +2,...,n — bn, where V; is the same as V; in (9)
with A therein replaced by A. Let A; = {7 : |V;]o > wi}. wl can be set as g, with
a to be small (e.g. o =0.0001).

(Stamping multiple breaks) In the case of multiple significant breaks in Step 5, we
sequentially locate the multiple change-points following steps in Section 3.1. To be
more specific, for k > 1, we let 75, = argmaXTeAkHA/T]OO and Agp = A\ {7 : [T —7%| <

2bn}. Then the estimate of the number of breaks is Ko = maxys1{k : Ay # 0}.

(Estimating the sizes of breaks) We construct 4, as in Step 3 in Subsection 3.1.
We set the estimates of the sizes of the jumps as $k = ]/A\*l&ﬂoo and their minimum

S s
as 0° = min; .,z Ok

(Constructing confidence intervals for the sizes) We construct ¢, as in (28).
Let

0 = (&i/f, &;/22, s &;@2)? Then the confidence interval for vector - at level 2« is
(

Vi — (jaé, '3/k + qa@)'

(Aggregated jump location estimation and confidence interval construc-
tion) Construct aggregated jump location estimates 7, as in (33). The confidence
interval for 7, is (7, — x, Tx + x), where z is the 1 — /2 quantile of the distribution
argmax, (—27'ai|r| + W(r)) and aj (resp. <) is ax (resp. <) with A, ¥ and ~;

replaced by their estimations.

REMARK 4. We notice that there are a few tuning parameters involved in the procedure.

The rigorous study of the selection of tuning parameters deserves further research. We



make some suggestions as follows. For b we can use either a plug-in approach or a cross
validation method following section 5.2 of Imbens and Lemieux (2008). We select the
maximum bandwidth over all locations for each time. «;; is chosen according to the
guidance specified below equation (41). m can be set up as (bn)'/? as in Theorem 5 (ii)
initially. And later can be updated by a grid search method which minimizing the out of
sample prediction error. We suggest to eliminate the breakpoints and its bn neighborhood

when we calculate the prediction error. O

We first report a few results with a known variance-covariance matrix. We put it under
rather simple settings for checking the performance of the algorithm with respect to different
p = 20,50,100,and 150, n = 100. Therefore, Step 2 of the above-mentioned algorithm is
omitted. We also include the cases with strong cross-sectional dependence with factor
structure and no cross sectional dependence. In particular, we consider different kinds of
data generating processes. We choose a) f;(u) = —i*/p?+u? and b) f;(u) = sin(27u+1i/p).
Let uiy = fi(t/n). € is taken to follow 1) an i.i.d. standard normal distribution, 2) a VAR(1)
model, with a randomly simulated coefficient matrix (maximum eigenvalue smaller than
1) and 3) a factor structure together with a VAR(1) noise. In case 3), the factor loading
and factors are generated with i.i.d. N(0,1). We set K, = 10 breaks for all cases, and we
increase the number of breaks in the cross-sectional dimension as the dimension increases,
ie. s =1,5,20,30. We set the break size to be 3/log(np).

For the unknown covariance, we report results for the cases n = 500, 1000 and p = 20, 30.
The break-locations are selected to start at time-point 100 and are distanced by 100, and
the break sizes are set to be either i) v;;; = 0.05 for i = 5, 10 or ii) v;;s = (v/t/log(pn)).Figure
5 shows the simulated data with the model corresponding to the case a),1),ii). We evaluate
our simulation performance over 1000 samples. We report the averaged difference between

the estimated number of breaks and the true break points (AD) (|Ky — Kq|) as in Table

3



Table 1: AD averaged over 1000 samples in different simulation scenarios, and their stan-

dard deviations in bracket.

p=20,n=100 p=150,n =100
1) 3) 1) 3)

a) | 0.152 (0.033) | 0.187 (0.046) | 0.121 (0.024) | 0.125 (0.029)
b) | 0.155 (0.041) | 0.193 (0.054) | 0.119 (0.025) | 0.126 (0.028)

p=100,n = 100 p =150, n = 100
a) | 0.098 (0.015) | 0.117 (0.021) | 0.072 (0.013) | 0.078 (0.014)
b) | 0.093 (0.017) | 0.124 (0.025) | 0.084 (0.016) | 0.090 (0.019)

1. The averaged distances between the breaks Eszol [Tk — 7i|oo (AM) are shown in Table
2. We notice that as the dimension and the the number of breaks in the cross-sectional
dimension grow, the estimation performance improves.

The estimation accuracy with covariance estimation is included in Tables 4 and 5. And
the averaged coverage probabilities of the confidence interval for the breaks (AC) are in
Table 6 at the confidence level of 90%.

When the tail of error distribution is light, our long run covariance estimator can still
be consistent. Table 3 shows the AD and AM/n in cases: p = 100 and n = 80; p = 150 and
n = 100. We set s = 5, Ky = 10. We find that the method is slightly less accurate with
the increasing dimension. To improve the estimation accuracy, a further extension of our
estimation to regularized high-dimensional long -run variance estimation can be considered.
As the sample sizes increase, the estimation precision is improved. We can see that our

method is robust against different data simulation scenarios, and we can achieve good level



Table 2: AM/n averaged over 1000 samples in different simulation scenarios, and their

standard deviations in bracket.

p=20,n =100 p=150,n =100
1) 3) 1) 3)
a) | 0.046 (0.016) | 0.057 (0.025) | 0.033 (0.012) | 0.041 (0.015)
b) | 0.048 (0.019) | 0.060 (0.028) | 0.036 (0.014) | 0.040 (0.018)

p = 100,n = 100 p = 150,n = 100
a) | 0.015 (0.007) | 0.023 (0.009) | 0.011 (0.003) | 0.017 (0.008)
b) | 0.019 (0.008) | 0.028 (0.011) | 0.012 (0.003) | 0.020 (0.007)

of accuracy with our method. In particular, the spatial and temporal dependency in the
error term would not affect our estimation.

Figure 6 shows the plot of the estimated robust long-run covariance matrix (right)
against the true one (left). On an overall level, we see that the true correlation matrix has
been precisely recovered, as the patterns of these two plots look the same. We also report
the distance between our robustly estimated variance-covariance matrix and the true one in
Table 7. The estimation precision of the long-run variance-covariance matrix is maintained

across different data-generating processes.



Table 3: AD, AM/n, and the maximum norm of covariance matrix estimation error aver-

aged over 1000 samples in different simulation scenarios, and their standard deviations in

bracket.

p=100,n = 80

p = 150,n = 100

)

2)

b

2)

A

D

0.185 (0.041)

0.190 (0.044)

0.197 (0.058)

0.186 (0.062)

0.189 (0.042)

0.194 (0.057)

0.192 (0.061)

0.187 (0.063)

AM/n

0.057 (0.018)

0.082 (0.019)

0.093 (0.024)

0.099 (0.018)

0.064 (0.021)

0.055 (0.026)

0.067 (0.023)

0.079 (0.027)

Maximu

m Norm

0.080 (0.016)

0.075 (0.019)

0.076 (0.021)

0.083 (0.024)

0.078 (0.034)

0.084 (0.041)

0.081 (0.037)

0.082 (0.022)




Table 4: AD averaged over 1000 samples in different simulation scenarios, and their stan-

dard deviations in bracket.

p=20,n =500 p = 30,n = 1000

1) 2) 1) 2)
a) | 1) | 0.035 (0.010) | 0.046 (0.014) | 0.029 (0.005) | 0.030 (0.007)
i) | 0.028 (0.011) | 0.043 (0.015) | 0.024 (0.004) | 0.027 (0.006)
b) | i) | 0.038 (0.012) | 0.039 (0.012) | 0.023 (0.004) | 0.029 (0.003)
i) | 0.023 (0.008) | 0.032 (0.011) | 0.026 (0.003) | 0.028 (0.002)

Table 5: AM/n averaged over 1000 samples in different simulation scenarios, and their

standard deviations are in brackets.

p = 20,n = 500 p = 30,n = 1000

1) 2) 1) 2)
a) | 1) | 0.044 (0.018) | 0.056 (0.015) | 0.033 (0.011) | 0.038 (0.009)
ii) | 0.027 (0.014) | 0.033 (0.013) | 0.021 (0.008) | 0.026 (0.007)
b) | i) | 0.045 (0.017) | 0.057 (0.018) | 0.028 (0.004) | 0.035 (0.006)
ii) | 0.039 (0.012) | 0.037 (0.014) | 0.016 (0.003) | 0.023 (0.004)




Table 6: AC in different simulation scenarios over all the estimated break-points and sam-

ples.

p=20,n=>500| p=30,n=1000
) |2 ) |2

a) | i) | 0.692|0.676 | 0.833 | 0.824
ii) | 0.719 | 0.708 | 0.856 | 0.833
b) | i) | 0.685 | 0.673 | 0.847 | 0.810
i) | 0.741 | 0.715 | 0.889 | 0.872

Table 7: Averaged difference between the variance-covariance and the true matrix. (L,

norm divided by p(p — 1)/2).

p=20,T =500 | p=30,T = 1000
1) 2) 1) 2)

a) [1) |0.005|0.008 | 0.003 | 0.007
ii) [ 0.004 | 0.006 | 0.003 | 0.005
b) [ 1) | 0.006 | 0.009 | 0.003 | 0.005
ii) | 0.004 | 0.007 | 0.002 | 0.004




B Proof

B.1 Some useful Lemmas

LEMMA 1 (Basic properties of the weights). We assume Assumption 2.2. Then by Fan and
Gigbels (1996), the weights of the local linear estimator take the following form

_ re = /(o) K(if () | )

(2
Koko — K3 bn

We have the following results which holds uniformly over i. There exist strictly positive

constants ¢, c,,, ct only depending on kernel K(.), such that

w? ’U)

< ) < Cp——
6"52%'%' o I, 0l S o
anw W2l and—ZwZZC” k < bn. (43)

Proof. We only show the last one, since the rest are similar and easier. Note

r)dz — Ky fo rK(z)dx
(/€2I€0 — k)t

anw,/k‘ = F(k/(bn)) + O((bn)™"), where F(t) = e fo

Define the numerator function as g(t) = ks fo z)dx — Ky fo zK(z)dx. We can see that
g(0) =0, g(1) > 0, and the derivative function ¢'(¢ ) = (ko—r1t) K (t), which is strictly larger
than 0 before ky/k1 and less than 0 afterwards. Therefore we have F'(z) > 0 on (0,1]. In
addition, we note F(0+) = k2K (0)/(kako — £37) > 0 and F(1) = 1. Thus infse(o1 F(t) > 0

in view of F'(t) is a continuous function. O

LEMMA 2 (Burkholder (1988), Rio (2009)). Let ¢ > 1, ¢ = min{q, 2}. Let My = 3. &,

where & € L1 are martingale differences. Then

T
Mz < K& N&NE, where K, = max((g — 1), Vg = 1).
t=1



B.2 Asymptotic results for Gaussian vector

LEMMA 3 (Comparison). Let X = (X1, Xo,...,X,)" and Y = (Y1,Ys,...,Y,)" be two
centered Gaussian vectors in RY and let d = (dy,do,...,d,)" € R*. We denote A =
maxi<; j<y |07 — 0} |, where we define 0, = E(X;X;) (resp. o), = E(Y;Y;)). Assume

2y

that Y;s have the same variance o > 0. Then we have

sup [P(|1X 4+ d|w < 2) —=P(JY + d|o < :c)‘ < AY3log(v)?/?, (44)

zeR

where the constant involved in < only depends on o.

Proof. 1t suffices to show for any d € R,

sup |[P(max (X; + d;) < z) — P(max (Y; + d;) < m)’ < AY3log(v)?/3.

z 1<i<v 1<i<v

To this end, we define

(2 1log(ZeXp (z; +dj))).

Replace the Fj(-) in the proof of Theorem 2 in Chernozhukov et al. (2015) by Fj(z). Then
by the argument in equation (10) in Chernozhukov et al. (2015), we have

]P’(max(X +d;) <x> <IP’<max(Y—i—d) <z 46+ B Nog(v )) (572 BITHA

1<i<v 1<i<v

where ¢ is some absolute constant. Then by Lemma 4, we have

]P’( max (X; + d;) < 1:) — IP’( max (Y; +d;) < 1:) < (84 B og(v))/1og(v) + (672 + 36~ HA,

1<i<v 1<i<v

where the constant in < only depending on o. Take 3 = 6 'log(v) and & = log(v)/SAl/3,

Same argument can be applied in the other direction, and the desired result follows. O

10



LEMMA 4 (Nazarov (2003)). Let X = (X1, Xs,...,X,)" be a centered Gaussian vector in
RY. Assume E(X?) > b for some b >0 and all 1 < i < wv. Then for any e >0 and d € R”,

supP(HX +dlo — 2] < €> < ceq/log(v), (45)
z€R

where ¢ is some constant depending only on b.

B.3 Proof of Theorem 1

The proof of Theorem 1 is quite involved. We shall first provide some intuitive ideas of the

proof strategy. We define

i—1 i+bn
I, = anrglaS);_bn Z wi— A e Z wi_i AN e, + d; % (46)
t=i—bn t=i+1
By (13) and (14) we have
T, —I] <  max |EV; — di|e = O(V?). (47)

bn+1<i<n—bn
Thus we only need to work on I.. For some m > 0, let a truncated version of the error term

be defined as

m—1
€tm = E Aknt—k~
k=0

Consider the m-dependent approximation [, of I., where I, is I. with € replaced by
€m. Then we have I, =~ I.,, for large m. Let I, ,, be I.,, with n, therein replaced by
2, where (z¢,t € Z) are i.i.d. Gaussian vectors with zero mean and identity covariance
matrix in R?. Since I, can be rewritten into the format of the maximum of summation
of independent vectors, by the Gaussian approximation theorem in Chernozhukov et al.
(2017), the distributions of I ,, and I, ,, are close. We complete the proof by showing that
the distributions of I, ,, and |Z 4 d|~ are close, and the continuity of the maximum of a

non-centered Gaussian distribution.

11



Proof. We now proceed with the formal argument. We shall first focus on case (i). (We
note that we use the same order of m in both case i) and ii).). Let m = (bn)*3+%_ for any

a >0,
P((bn)'?T, < u) < P((bn)"?|T;, — Im| > a) +P((bn)"21.,, < u+ )

and

P((bn)2|Z + d|os < u) =P((0)*Z + doe <u+a) —Plu < ()2 Z +d|o < u+a).

Hence

sup [P((bn)1/2Tn <u) —P((n)?|Z + d|o < u)]

ueR

§P((bn)1/2|Tn —Iem| > oz) +sup |P(Lem < u) —P(|Z + d|oo < u)

u€eR

+ SupIP’<|(bn)1/2|Z +d|o —u| < a) =T + 1+ 1.

u€eR
For the I part, [T}, — I..n| < |T), — I| + |I. — I..n|. Recall (47), then |T;, — I.] < cob? for
some constant ¢y > 0. We define o/ = 2¢; (np)l/quﬁ, where the constant ¢; is the one to

be defined in Lemma 5. Then by Lemma 5, we have
P((bn)2|I, — I | > ') < (bn) =92,

Hence for o = o' + ¢co(bn)'/20?, I, = O((bn)~9/2).
For the I, part, note that
Ly <sup [P(lem < u) = P(Ly < u)| +sup [P(Ly < u) = P(|Z + doo < u)| =: Iz + oo
u€R u€eR

By Lemma 7 (1) for part Ir; = o(1) and Lemma 8 for Iy, we have

I = O((bn)~/Olog™(pn) + (np)*'*/ (b)) log(pn) + (m/ (bn) +m ") log(np)?)

12



bn

For the I part, the diagonal entities in bn@ take the same value i.e. 0°% = 2bn > " w?,

which by (43), converges to 2¢,2 > 0 , where ¢, is a finite constant. By Lemma 4

I S alog(np)'/”.

The desired result follows by combining the I;-I3 parts and a similar argument for the other
side of the inequality.

For case (ii), we have the same decomposition I;-I with m = (bn)*/+9 For the I; part,
we define o = ¢log(np)'/>m =" + co(bn)*/?b?, for some constant ¢; > 0. Then by Lemma 6,

I, = O((np)~9). For I, part, by Lemma 7 (2) and Lemma 8, we have
I, = O((bn)_1/610g7/6(pn) + (m/(bn) + m_ﬁ)l/glog(np)Q/?’)

For I3, same argument can be applied. Combining the rates of I;-I3, we obtain the desired

result. O

Lemma 5 and 6 give us concentration inequalities for the m-dependent approximation

of I..

LEMMA 5 (m-dependent approximation for polynomial case). Assume conditions in The-

orem 1 (i). For some 0 <m <n/2 and u > 0, we have
P((0n) V2|1, — I o] > u+ cr(np)Tm ™) < ey(e= ™ 4 npm=9% (bn)=9/%u"9),
where ¢y, c2, c3 are some positive constants only depending on q, ¢y, Cy, Cs, [iq-

Proof. We note that I. — I, can be bounded by

i—1 i+bn
e = Iem| < bn+1r£1ia§>;_bn (’ Z wi—tA_l(Et - et,m)‘oo + ‘ Z wt—iA_l(Et - 6t,m)|oo> =: 1) + L.
t=i—bn t=1+1

13



We let E;; = i;b._bn)v(Hm) w;_tA"'A,_;, then I; can be rewritten into

I, = max E By o 48
bnt+1<i<n—bn | - i0,91,92 M52 | 5 (48)
1<51<p 1<i—m—1

1<j2<p
where E;; ;, j, is the (ji, j2)th entity of matrix E;; and n,j, is the joth entity of 7. Since
m.;,s are independent for different (I, j2), by Lemma A.2 in Chernozhukov et al. (2013b),

for u > 0,
P(Vbnl, > 2VbnEL +u) < e /7 4 K 0 9H,, (49)
where K, is some constant only depending on g,

2 2
c°=bn  max E(E; 1 50M0
b1 e —bn § (Bt jrgeMga)
1<ji<p  Iizm=1

1<52<p
and
H:bTLQ/Q ]E max EAl..lAq
g = (bn) § (bn+1)v(l+m+1)§z'§n—bn| 141,02 |
I<n—bn—m-—1 1<j1<p

1<je<p
Then we start to analyze the rates of the objects involved in (49). We define E;; ;, . to
be the jith row of E;;. For the o? part, by Assumption 2.5 and (43),

| By, |2 < Z wi—t%ff\&—ﬁﬁ, 2 < cycsm ™’/ (bn), (50)
t>l+m
and
i1
Z |Eii ]2 < Z Z wi_ta;f]At_lJl,.|2 < epcsm P, (51)
I<n—bn—m-—1 t=i—bn I<t—m

Combining the above arguments and recall that Enz ; =1, we have

2 ( Z . o >< 2,28
or<bn max {20 Bl max 1B la) < (cucd)m (52)
1<Gi<p I<iom-d

14



For the H, part, by Assumption 2.5 and (43), max; ;, j, |Eiij| < cwcs((1 —1) V
m)~?/(bn). Recall that p < c,p. Then we have

Hy < () Y fewes (L= 1) vV im) ™2/ (bn)]ug

I<n—bn—m-—1

1<jo<p
< (cwcs)qug(bn)_Q/2]3< Z m P+ Z (1— l)_ﬂq> < co(bn) " *npm =",
—m<Il<n—bn—m I<—m
(53)
where ¢y = 3cp(cwcs)?pd.
For EI; part, note that EI; < ||I;||,- By Lemma 2, we have
1/q
EL < (Y E(Y Bugamal”) < (3 ((a=1) ) 2 Bt i) /)
i:jl lvj? ivjl
Thus by (50) and (51) we have
EL S (bn)~/2m”P (np) /1, (54)

where the constant in < only depends on ¢, ¢s, 14, ¢. Our conclusions follows by applying

(52), (53) and (54) into (49) and a similar argument for I,. O

LEMMA 6 (m-dependent approximation for exponential case). We assume conditions in

Theorem 1 (ii). We have
ane*‘“mwuz, if u < as(bn)/?m=5,
P((bn) 2|1, = Iopm| > u) < 2(bn)

1/2

2npe—asm’ )%, if u > ay(bn)/?m=b,

where ay, as, az are some positive constants only depending on ag, Cy, Cs, fe-
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Proof. Recall the definition of I; and I in the proof of Lemma 5. Let e* = c,com™"/(bn)

and ¢* = ag/e*. Then by (50), Ee“Fitiri2Miz < oo, for any 0 < ¢ < ¢*, and we have

E(e) < Z E exp{c Z Ei,z,jl,jzﬁl,jz}+exp{_c Z E"vl’jmm’ﬁ}

n+1<i<n—bn I<n—bn—m—1 I<n—bn—m—1
1< <p 1<j2<p 1<j2<p
=:I1; + L.

Since En; ; = 0, for £, j, # 0, we have

B(ecFetirian — 1 = cBirg, ) 2o

]E(ecEi,z,jl,jz’?l»jz) =1+

202 i,0,51,52
17l7]17.72
e Mgyl _ 1 _ oxe¥|n, .
< 1+E(€ 2l —1—ce*ngl) o0
— * ok )2 1,0,51,72
(cre*)
Me 2 12
<l+= E 1hJ1,520

ag
where the first inequality is because that for any = > 0, the function g, (t) = (e'*—1—tx)/t?

increases on t € (0,00), and e —t < elfl — |t|. We define ¢ = y. /a3, and the rate of I is
derived as follows,
122 ' 2 2
I; < ZH (1+dc E ]2) < Z exp{cc Z Ei7l7j17j2},
2,71 1,2 n+1<i<n—bn I<n—bn—m-—1

1<ji<p 1<j2<p

< np exp{cym™>"/(bn)},

where ¢; = ¢ the second inequality is due to 1 + z < e* for any = > 0, and the last

’LUS’

inequality is by (52). Same bound can be derived for I;5. We note that
P(l; > u) < e “E(e™) < e (I + L),

We define ¢© = bnm?Pu/(2¢1). Hence if ¢© < ¢*, then P(I; > u) < 2npe v'm*’bn/(er). if
¢® > c*, then P(I; > u) < 2npetebn—ao/ (cwes)brnmPu The proof for Iy is similar and therefore

omitted. n
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LEMMA 7. Let m — oo and m/(bn) — 0.

(1) Assume conditions in Theorem 1 (i), we have
sup |P(Ie,m S u) - P(]z,m S U)|
u€R
S(bn) 710" (pn) + ((np)*'*/ (bn))**log (pn),
where the constant in S only depends on c,, c,,, cs and fi,.
(2) Assume conditions in Theorem 1 (ii), we have
sup [P(Iem < u) — P(I,,, < w)| S(bn)~Ylog(pn)™",
ueR

where the constant in S only depends on ¢y, c,,, cs, ag and .

Proof. First we consider the case of (1). Denote

(i—1)A(m+1-1) (i+bn)A(m+1-1)
Diy= Y  w_AT'AL, and Dj = > w AT AL (55)
t=(i—bn)Vi t=(i+1)VI

Then I, can be rewritten into

> Dum— >, Dim+d

i—m+1—bn<l<i—1 i—m+2<1<i+bn

Ie = max

bn+1<i<n—bn 00

Let Np = (n — 2bn)p and Ny = (n+m — 1)p. Let G = (Giy)ig, bn +1 < i < n — bn,

2 —m <[ < n, be a block matrix in RN*M with

D;, if i—-m4+1—-tn<IlI<i—-m-+1,
Giu={Dy—D; if i-m+2<1<i—1, (56)
-D;, if i<Il<i+bn,

17



and elsewhere zero. We define d, ;, to be the jith entity of d;, No = bnN; and G, ;, j, be
the (jl,jg)th entlty of Gi,l- Then

1/2 _ 1/2 A1)2
Ny em =, max > Girgp + Ny, |, where i, g, = Ny Gy gt
1<ji<p  2-m<I<n
1<j2<p
(57)
For any r < ¢, we denote
n
o L r _ rorarT/2
M= max  Oiyr, where 0, = > Elgivgipl /N =D (Giagy NG /Ny
1<j1<p 2—m<I<n 1=2—m
1<752<p
By Assumption 2.5 and (43), for any r > 2,
|Dirolr < |Digjil2 < cwes/(bn), and similarly |DZZ7]~1’_|,, < cwes/(bn). (58)

Then by (56), max;; j, |Giij . |r < 2¢ycs/(bn). Since G, is zero for | < i —m+1—bn or
[>14 bn,

M, < (4cycspir)(Ny Jbn) /274", (59)

Especially, for r = 2, M, < ¢; where ¢; = 4c,cspe. By (55), for i —bn <1 < i —m, and
Sm = 7k;n:i()l Ak7

m+l—1 +m—1
Giy=D;; = Z wi ANTA = w  ATNS +wi ATH(S, = S) + Z (Wi — wi )N 1Ay
t=l t=l

Therefore by Assumption 2.5 and (43), we have

I+m—1
|G, ]2 — wisi| = Uj_l,lj/lgwi—l Z | Ak l2 + O-j_hlj/f Z \wi—y — wig||Aijy ]2
=l

k>m

< cpesm P/ (bn) + cpesm/(bn)?.
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Note m/(bn) = o(1), thus by (43),

1—m

1/2
. : 2, 2 /
min 02> min (D (Gu BN/ ) = e —0(1) Z et (60)
n<i<n—bn n<i<n—bn -
I<hi<p I<ii<p  I=i-bn

some constant ¢; > 0. Since max;; j, j, |Giijij»| < 2¢uCs/(bn),

maXE(maX‘gi,lJl,j2|q) = 1nax ‘Gi,l,j17j2N21/2|q < (QCwCS)(Nl/(bn))q/z'
1,52 2,71 i,0,91,72

Note
B, = max {Mg, M, (maxE(max 9ita21") " q} < (Vi/(bn))'72,
2J2 2,J1

where the constant in < only depends on ¢y, cs, f1g. By Proposition 2.1 in Chernozhukov

et al. (2017) we have

sup [P(Ny * I, < u) — P(N,*L,, < u)]
ueR

<(B2log’ (pn)/N1) ' + (B2log®(pn) /N{ %)

<(bn)~Clog™ (pn) + ((np)*'*/ (bn))*log(pn).

1/3

For part (2), let M = logy(p.)V1, and B!, = (2c,,csM/ag)(Ny/(bn))Y2. Since max;; j, j, |Gitjy.in] <

2¢yc5/(bn), we have

max E(edtiri/Bn) < 9.

i)l’jlij
Note

B, == max{M;, M}, B} < (Ni/(bn))"2.

Apply the same argument as for part (1) with this new B, then Proposition 2.1 in Cher-
nozhukov et al. (2017) leads to

sup |P(Ny I, p < 1) = P(Ny* L, < w)| S (B2log" (pn)/N1)"° S (bn)Slog™®(pm).

u€eR

[]
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LEMMA 8. Assume conditions in Theorem 1 (i) or (ii), for m — oo, m/(bn) — 0,

sup [P(Lm <u) —P(|Z 4+ d|oo <u)| S (m/(bn) +m- ) 1/3 log(np)2/3

u€eR

where the constant in < only depends on ¢, ¢, and cs.
Proof. Werecall that D;;, Dy, in (55), G = (Gj;) in (56) and G° in (15). It is not hard to see

that the covariance matrix for I ,, is GG and the covariance matrix for Z is Q = G°G°T.

We let

HOZ(Gi,l) 2-m<i<o , and HlZ(Gi,Z) 1<i<n

bn+1<i<n—bn n+1<i<n—bn
Then G = (H°, H') and
|GGT . G0G0T|max S |HOHOT|maX + 2|(H1 . GQ)GQ—Wmax 4 |(H1 . Go)(Hl . GQ)T|maX

= 11 +12+13.

By (58), max;;; |Giyj.-l2 < 2c,cs/(bn). Therefore

Bl < (n) a3 (G blGontn b < (e /(bn)

11,82,71,J2
I 2T

Denote Aj; = Giy — Gf). Fori —=m+1—bn <1 <i—bn, Ay = D;y, and thus [A; ;. ]2 <

CwCs/(bn). For i —bn <1 <i—m+ 1, we have

m-+Il—1
Ai,l = Di,l — wi_lA_IS = Z (wi—t — U}i_l)A_lAt_l — U)i_lA_l Z At. (61)
t=l t>m

Hence |A; ;. |2 < cwesm/(bn)? +cpesm™ /(bn). Fori—m+1<1<i—1,A;; = D;y —D;—
w; ) A1S. Then |A; ;|2 < 3cyes/(bn). Similarly we can bound |A; ;|2 for i <1 < i+ bn.
For the rest [, A;; = 0. We note that |GF, ; | < cycs/(bn). Consequently,

(bn)ly < (bn) max Z!Amﬁ 2GS, 1, 12 S mf (bn) +m 77,

Zl 12 ]1 ]2
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where the constant in < only depends on ¢, ¢,. Similarly we have (bn)lz < m/(bn) +m=".
Combining I;-I3,

(bn)|GGT — G°G°T | o Sm/(bn) +m™".
By (43), for any j we have bnQ@;; = 2bn > "  w? — 203. Then the desired result follows

from Lemma 3. O

B.4 Proof of Theorem 2

Proof of (i). Note 1 — ®(x) < (2r)~ 2z e **/2 where ®(-) is the cumulative distribution

function of a standard normal distribution. Recall G§,in (15). Let G} = (G7,, GY,, - .., G},)
and 2z be a Gaussian vector in R™ with zero mean and identity covariance matrix. Let

G5 ;. be the jth row of Gf , then

n—bn p
B((0n) |G 2l 2 w) < 30 D T P(0n)'IGY ] 2] > w) < mp(2m) 7 (o fu)e D,

i=bn j=1

(62)

where 0 = (bn)V2|GS.; o = (2bn 3", w?)Y/2, which by (43) converges to 2-'/2¢,, > 0.
Thus

P(|G°z] > Qwalog(np)l/Q(bn)_l/Q) — 0. (63)

Let S:={1<i<n:|i—m >bn, forall 1 <k < Ky}. For any i € S, d; = 0. Hence by

Theorem 1,

sup
u€eR

Since max;es |G 2|00 < |G°2|oo, by (63) and (64) we have P(max;es |Vi|oo > w') — 0. Thus

IP’(I]ZQE%XH/AOO > u) — IP’(I]ZQE%X|GZ_§|OO > u)’ — 0. (64)

we obtain

lim P(Vt € A;,31 < k < Ko, |t — 7| < bn) = 1. (65)

n—o0

21



Recall that d,, = A~y Since |d,, + Gy Zloo 2 |dr|oo — |GY, 2|0, We have

IP’( min |d G: z <wT)<IP’< max |G° zloo > min |d —wT>
1§k§K0| mt O 2l < - 1§k§Ko’ i Zloc _1§k§K0| mloc

<P(|G°2o > 6° — w).

Therefore P(mini<k<s, |dr, + G2, 2|0 < w!) = 0. Subsequently the break statistics will be
bigger than the threshold at the points of break with probability approach 1,

P( tin |Vr, [ < w') =0,

in view of

sup |P(|Va, |oo < w) — P(|dy, + Gih,gloo <u)| —0.
ueR

Therefore we have
P(r, € A1, 1 <k < Kp) — L. (66)
Let B(r,r) = {t: |t — 7| <r}. By (65) and (66), we have
liTILnP<{7'1,TQ, TR C AL C UlgkgKOB(Tk7bn)) =1.

Since for ky # ko, |k, — Tiy| > bn, for any ki # ke and t € B(7y,,bn), for all large n,
B(t,2bn) N B(7k,, 2bn) = 0. Thus we complete the proof. O

Proof of (ii). First consider the case (1). Let ,uz(»l) (resp. Ui(l)) be ,&EZ) with Y; therein
replaced by u(i/n) (resp. €;). Similarly we can define qu(r) and Ui(r). Let Ap; = ,ul(l) - ,ulm

and AU; = Ui(l) - UZ-(T). Let Af; be Ap; with p replaced by f.
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For any 1 < k < Kj, and any ¢ such that [t—7;| < bn, we have Ap, = (1—2?:17’“' w;) Y+
Af;. Hence

‘/;/ = AilAlLLt + AilAUt
[t—7%]

= (1= w)A '+ ATAf + ATIAUL, + (ATNAU - ATTAUL). (67)

i=1
Note 7 = argmax.;_,, j<pn}|Viloo- The proceeding proof contains three steps.
Step 1. Let j,, = argmax;|V; ;|, where V%, ; is the jth entity of V. This step shows

liminf min [(A7'y);, [/6° > 1.

n 1<k<Ko

We shall show by contradiction. By (47), |Afi|c = O(b?). If there exists 1 < k < Ky, such
that [(A™"y);, | < ¢d°, for some ¢ < 1, then by (67), [Vi |eo < ¢6°+ O(0%) + [ATT AU |-
Let U, be U, with 7;; replaced by z; where z;; are i.i.d standard normal random vari-
ables. Then max; [A"'AU;|s = Op((bn)~/*log(np)'/?). Then by Gaussian approximation
Theorem 1,

max IATYAU |5 = Op((bn) = Hog(np)*/?).

1<k<Ko,|t—|<bn
Since 0° > (bn)~Y?log(np)'/?, we have |V; | < ¢0°(1 + op(1)). On the other hand, by
(67), Vi loo = 0° 4+ O(*) — |[ATTAU,, |0 = 6°(1 + 0p(1)). These imply P(V;, < V,,) — 1,
which is a contradiction.
Step 2. This step shows
max IATLAU,, — ATYAU o /|t — T Y2 = Op((np) Y1/ (bn)).

1§k‘§K0,|t7Tk|§bn
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Let t < 7, the other direction can be similarly dealt with. Note that

T —bn—1 t—1 Tp—1
AU, — AU;, = E W€ + E (We—j — Wr—1)€ — E (Wit + Wr—i)€
i=t—bn i=T—bn i=t+1
t+bn T +bn 7
- § (Wi — Wi—r, )€ — E Wi—r € + Wry 1€ — Wy €7, =: E Tk
i=7+1 i=t+bn+1 k=1
For r; we have
T —bn—1
-1 -1
|A Tl’OO = 1I<n,a§ E El7j17j277l,j2 , where E; = E wy— AT Ay,
<j<p

I<7—bn—1,1<j2<p i=(t—bn)VI

and Ej ;, j, is (j1, j2)th entity of matrix £;. Then

max A7 oo/t = 7il? = Op{(np) "/ (bn)},

1<k<Ko,|t—7¢|<bn
uniformly over ¢, k. A similar argument leads to the same bound for r3 and r5. For ry, we

can rewrite

t—1
-1 o / /I -1
A7 |00 = 1%§L><<p E By Mg, |, Where B = E (Wi—i — Wy ) AT Ay,
Y e | i=(1—bn)VI

Then similarly we have max;<p<rey jt—r|<tn |A 72|00/ |7 — 132 = Op{(np)*/1/(bn)?*}. We
obtain the desired result by summing up all the above bounds.

Step 3. Without loss of generality, assume 7;, > 0. Then by the argument in step 1,
with probability tending to 1, V4 ; > 0. By Assumption 2.1, we have IAfy — Afrle =
O(|t — 7|/n), uniformly over ¢, 7. With probability tending to 1, by (67),

|‘/Tk|OO - |‘/7A—I’c|oo Z lemj‘f‘k - Vf-kijk

|7 —Tk|
> > wi(A1y), — 07 — mil/n) — AT AU, — ATMAUS |,
i=1
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By (43), we have th 1T| w; > cr|t —7|/(bn). For finite moment case, by Step 1 and Step 2

we further derive
Varloo = Vagloo = ol 7k = m18°/(bn) — O(|7% — | /n) — Op(|me — 7| (np) 7/ (bn)),
uniformly over k. Since |V, |« < |V, |0, We have

e |7, — 7| = Op{(np)*?/5°%}.

Similar argument can be applied for sub exponential case. O

Proof of (iii). Recall the definition of ,ugl), uﬁ’"), Ut(l) and Ut(r) in the proof of (i) and M = bn.
Since M >> log(np)/§°?,

18 ar = (G = M)/m)loe = £S5y = F((Fe = M) /n)loe = OF).

Similarly [, — p((7x + M) /n)| = O(b?). Since max; <<, | fi| is bounded,

|1(Fr + M) /1) = (T = M) /1) = Yo oo

= /(7 + M) /n) = f((7r = M) /n)|oc = O(M/n).

Hence

AT (A = Y )|oo = [T N7k+M Mik)M Ve )+A_1UA(T)M—A1UU Mo
<O(b+M/n)+[AUY_, — AU . (68)

By Gaussian approximation and (63) we have

P(AT'UY) , — AU

Tk+M|OO > QCiulog(np)l/Q/(bn)lﬂ) — 0.

Inserting the above equation into (68) and we obtain the desired result. O]
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B.5 Proof of Theorem 3

Proof. We recall M = bn. Similar to (68), we have |A‘1(?yk—yk*)—A_l(U%(ZZrM—UTEQ_M)|oo <
cM /n. Therefore

sup [P((bn)"2[A™ (45, — i)

o < 1) — P((bn)?| 2] < u)‘

u€eR
<supP(|(bn)"?| 2|0 — u| < c(bn)'/>M /n)
u€eR
+50p [BIAN ULy = Ul S 0) = P(1Zho S w)| =T +1o

We note that (bn)"/2Z; are i.i.d with variance 2(bn) 2?21 w?, which by (43) converges to

2¢.2 > 0. Therefore by Lemma 4,
I1 = O{(bn)"/*(M /n)log(np)"/*} = o(1).

Let G = (él,ég, e G’n), where G, = Wi NS T — M —bn <1< 7, —M-—1,
and él = wl,(%HM)A_lS, if 7.+ M+1<1<7,+ M+ bn and elsewhere zero. Let z be
Gaussian vector in R™ with zero mean and identity covariance matrix. Then Gz 7. By

the same argument as in Theorem 1 with d; = 0 we have

sup |P(JAN (UL, — UL

Te+M
ueR k

oo < 1) = B(|Gzloe < w)| = o(1).

Thus Iy = o(1) and we complete the proof. O

B.6 Proof of Theorem 4

Proof of (i). We shall condition on the event where S, = Sj, and |7, — 7| < bn. By
Theorem 2 and Corollary 2, the event would take place with probability tending to 1.
Denote g, = 3,5 (A 198)i(A™ ), and @y, = 3 (A~ 7%);(A7"45);. Then we have

X = alizn, + Y fi(t/n)(A ), + e

JESK
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Let I(t) = /(4bn + 1)/((t — to)(4bn + 1 — t + 1g)), to = 71 — 2bn, t; = 73 + 2bn and

t1 t—to t—1
- <§X54bn+1 _§X8>Z(t)'

For any r > 0, we have

tl Tk — 1

T, —t
Drk+r—Dm=<Z k — Lo _Zx> (1) + 1) —l(Tk))
s=to s=to
t1 Te+7r—1
— fI I
+<Zt 4bn—|—1 > X ) Tetr)=h+h.
s=to S=T

Denote I;(f) (resp. Li(e), Li(a)) to be I; with X, therein replaced by f(t/n) (resp. &,
arlisn), i =1,2.

Firstly, consider the f part. Note |I(1x +7) — I(1)| < (bn)~3/?r. Thus by the continuity
of f;, for I part, we have

max ‘ ij

T —1

(s/m) |+ ) = Um) | = O(*) U + 1) = U
= O(br(bn)~*/?).
Similarly we can handle the f part in Iy and therefore

[L(f) +L2(f)] = O(br(bn)~?|Fkh)-

Secondly, let us consider the drift part, for r < bn,

Ii(a) + Ix(a)

T —t
=(ty — 7 + 1)ax k0

4bn + 1
=— (bn)_l/Q&kr/2(1 + 0(1)).

(i + 1) = 1)) + (0 = 70+ D — ri U + 1)

,
4bn + 1
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Thirdly, let us focus on the € part. By Theorem 2 (iii), [(A™'4%)jes, |2 = [Fx|2(1+0p(1)) and
thus ar = |[Jx|2(1 + op(1)). Then together with (35), we obtain that the long run variance
for e, is ¢Z(1 + op(1)). Hence by Theorem 1 in El Machkouri et al. (2013),

F+2bn Tt
Z gs| = Op((bn)%¢log(bn)?)  and Z s = Op(r'/%g,).
s=T71—2bn S=Tk

Therefore
Li(e) = Op((bn)1/2§klog(bn)l/2|l(Tk +7)— l(Tk)D = Op((bn)_lrgklog(bn)l/2).

For I, part, we have

t1 Te+r—1
L) = (Legmr— 2 )it
s=to S=Tk

- OP<(bn)_1T<k10g(bn)l/2 + Tl/ng(bn)_l/z)
Combining all the previous parts we have

D‘rk—i-r - D‘rk
— — (bn)" 2y (1 + 0p(1))/2 + O(br (bn) /2 411) + Op ((bn) ' rerlog(bn) /2 + 1!/ (bn) /%)
(69)

Note |Jx]1 < |8k|1/2wk:|2, thus
Fl1b < [Skl"?|Fk]2b < [Sel?[A]20" < |3]3 = ay.

Therefore in (69), we have O(br(bn)~2|3,]1) = o((bn)~*2ayr).
Since ¥, is a covariance matrix with diagonal entities 1, |S|y < |Sk|. Note ¢ < [S¢|2ax,
thus

o < |8k %a).
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Then we have
G (bn) 7 2log(bn) /2 < Sk %a,? (bn) " log(bn)? < |Si|Y?a)*6T < ay,

where the last inequality is because a; = |9x3 > 612|Sy|. Therefore Op((bn)~'rglog(bn)'/?) =

op((bn)~"2ayr) in (69). Inserting the above equations into (69) leads to
(bn)Y2(Dy, oy — Dn) > —arr(1/2 + 0p(1)) + Op(cir/?).

Since Ds, is the maximum, D, ., — D, > 0. Therefore r = Op(c?/a?). By a similar

argument for the r < 0 part, the desired result follows. O

Proof of (i1). Let F; be the o-field generated by {n,;,s < t,1 < j < p}. Denote the
projection operator P = E(:|F;) — E(-|F—1). Let J; = (A ), if j € Sk, Y = 0 if
J & Sk. Let (n;) be an i.i.d copy of (7). Then

e 1= |Pocilla < 1WA Ao — ) s S 1T A Arlapu,

where the last inequality is by Lemma 2 and that 7, 1 < j < p, are i.i.d. By Assumption
2.5,

P
STe YT EAT AL <30S Ao PlA e S 1Fkhm ™ = [Fulim ™

s>m s<m 7j=1 s>m

Thus by Corollary 2.1 in Berkes et al. (2014), strong invariance principle holds for » __, &.

Thus similar to (69), we have
(bn)Y* (D, p — D) = =2 agr (1 4 0p(1)) + Ly(e) B 2l + o.B(r).

The r < 0 part can be similarly dealt with. O]
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B.7 Proof of Theorem 5

Proof of (i). The main idea follows the proof of Proposition 2.4 in Catoni (2012), however

due to the dependence and the break points, our result is much more involved. Let
S ={k | A or Ai_; contains break points}.
Then by assumption |S| < 2K,. We look at estimators without the break point first.

- Z(bai,j(&i,j»k —u)/Ny, where Ny = Ny —|S|.
k¢S
Let
5'1'73‘ = Z]E&i,jyk/NQ and UZ-QJ = ZEa-l%j,k/]\/é _ 6’2
kgs k¢S

Define functions
Bfj(u,2) = ;5 —u+ o 5[(5; —u)® +v7,] /2 + x,
B (u,z) =055 —u— a;;[(Gij — u)® + vij]/Q — .

The proof contains four steps.
Step 1. This step shows that function Eh,;(u) for any 4, satisfies, the expected loss

functions have upper and lower envelope functions,
B;;(u,0) < Eh;j(u) < Bt (u,0).
By (40), ¢(z) < x + x?/2 and thus

) < Z (Gijo — u) + @i jE(G; jx — u)?/2) /Ny = B} (u,0).
keS

Similarly we can bound the other side.
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Step 2. This step shows for any x > 0, the estimated influence function h; ;(u) is highly

concentrated around its mean, for Cy > 0 and 2 > (Nylog(Ny))/2,

SR sup  [higl) — Ehuyu)] > (0 201)/Na) S 2 (Nalog(m)t? 4 e-se8)

ig—1 lu—o4,;|<Co

(70)

where ¢ and the constant in < are independent of n, p.

First introduce some notation. For any random variable X, denote E¢X = X — EX|
the centering operator. Let Fj, = (1, t € Us<pAs) and Fi 15y, s < k, be Fj, with n,,t € A,
therein replaced by 7;, where n; are i.i.d copy of 7;. For any random variable X = h(Fy),
let Xy = h(Fkqiy). Denote A&y, = & — §r—1. We now show that the temporal dependence
measure decays with polynomial rate. Let (;;x(u) = @a,,(Gijr — u). Since |¢'| < 1, we

have for any s € N and any u,

| sup |Gk () = Gigikti—sy (W) llg/2 < Gijk — Gijik fh—st g2
S2_1m<||EoA§k,i(A§k,j — A& th—s}) g2 + [Eo(A&k; — Afk,i,{k—s}>A§k7J}{k—S}||q/2>

= 2_1m(11 + 12)

Let Uy, (resp. fri) be & with Y; replaced by ¢ (resp. f(t/n)). Then & = e + fri
when there is no break. Let AUy ; = Uy; — Ui—1, and Afy; = fr; — fr—1:. Then we have

I, < HEOAfM(AUk] — AUy H n HEOAUM(AUM N s})H eI
(71)

Since max; | fj|oo < f*

max [Afi ;| < f*m/n. (72)

1<j<p
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Let Ey ;. = ETl)m Ay 1., where A,y ;. is the ith row of matrix A,_;. Then

(km41)Vi
Z Eyri.m/m
1<(k+1)m

and

Dear Erpie — Erovgi ) —mp)/m, s> 1,

ZleAk_s Ek,lm-(’?l —n;)/m, s =0.

Since 7, are i.i.d, by Lemma 2, (72) and (73),

AUy — AU fr—sy =

(73)

1/2
A fri(AUk; — AUk r—sp)llq/2 < 2f*0q< > (|Brpil + Ek—l,l,z'-|2)2> fig/2/m.  (74)

leEAK_¢
By Assumption 2.5, we have for any s > 1,
Z |Ejri 3 S m(m(s —1))*0,;, and Z |Eypi-l3 S mo,
€A, 1<(k+1)m

where the constant in < only depending on 3, ¢5. Hence by (74) and (75),

Iy <m'2n Y m(s — 1))_'8041/-2

4,0 )

where the constant in < only depends on 3, ¢y, ¢, ftg, f*. By Lemma 2 and (75)

||]E0Uk,i(Uk,j_Uk,j,{k75}>||q/2:HEO< Z Bl gy i-my Z By, (s — %))H

L<(k+1)m lo€Ak—s

2
Sm ( > Y B BB )
<(k+1)ymlzeA_g
< m-l<m<s ~1)0%012,

where the constant in < only depends on g, g, ,¢s. Thus L1z < m~(m(s — 1)) Po

By combining the bounds for I;; and I;5 and a similar argument for I, we have

_ 1/2 1/2
b, = maxc || sup |G (w) = G thmsy (W] y S (m5) P Loy + Lici)o 07,
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(77)

1/2 1/2

JJ

(78)



where the constant in < only depends on g, ¢, ¢o, 3, ¢, [*.

Let § := 0/%0 1/2 z/(2N;) and A, be the 0 net for {u : |u — 0;,;| < Cy}. Denote

Z’L

f(u) = hyj(u) — Ehi,j(u). Then by |¢'| < 1,
sup — min |f(u) — f(v)| < 6.
lv—0 5| <Co 4EAn
Therefore |A,| = 2Cy/§ = O(n) and
P sup  [hig(u) = Bhuyu)] 2 w(01%0")/Na ) < Pmax oy (u) — Bhuy(w] 2 w01 %03")/(2N0)).
u—0o;,5|<Co n

Desired result follows from Lemma 5.8 in Zhang et al. (2017).
Step 3. This step shows for the estimator

1I<na)<( |Ulj Ui,j| = O(miﬁ/(BJrl) 3{2 1/2 + mg/n ) and Ui2,j = O(Ui,iaj,j); (79)
VAN Y

where the convergence is uniform for 1 <, 5 < p.
Let € ;1 be 6; ;5 with Y; replaced by € and let o7 ; = E¢; ;1. Then by (72),
1655 — 05,1 <m Y |A Sl Afisl/(2N2) = O(m? /n?). (80)
kS
Note the convergence in above O(-) and all the followings are uniform for 4, j. Let p; j, =
E(eo i€k ;). Then for any L < m,

ImE(U1,:Us;) — 03| = ‘m_l > m—[kDpigk —oig| = O lpijul + Lm™ Y lpisul).

—m<k<m |k|>L keZ

By Assumption 2.5, Z\MZL‘IOi,j,kl < ZteZ,lklzL [ At lo| Atirgel2 = O(L ﬂ01/2 1/2) Take
L =mY6+Y then |[mE(U, U, ;)—0, ;] = O(mfﬁ/(ﬁ“)agfajl-f). And similarly |mE(Uy ;Us ;)| =

O(mfﬁ/(ﬁJrl)ail,éQo']l.gz). Hence

03 = m(E(U1Ury) + E(Us,Us) — E(UsUsy) — E(Us U ;) /2 = 01y + O(m ™/ FHD g1 12602),
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Together with (80) we obtain the first part in (79).
Since 61’,]’,]{ = m(Afk,mLAUkﬂ)(Afk,] +AUk,j)/2> we have E&i,jyk = mAfkyiAka/Q—l—UZj
By (72) and (80),
= ZE&sz/NQ — 6’127] = ZV&I’(&L]’J@)/NQ + O(msn_201/20]1é2).
k¢S k¢S
Note by (73) and (75) we have
m Var(AszAUkJ) O(m?n~ 20“) and m2Var(AUk7iAUk,j) = 0(04,0},)-

Thus Var(6; ) = O(04,0;;) and the second part in (79) holds.
Step 4. Since |S| < 2K, for any i, 7, and |¢|« < log(2),

|N1hij(u)/Na — hi j(u)] < 2log(2) Ko/ (i jNa). (81)

Combining (81), Step 1 and step 2 with x = N, /2 log!/ ?(np), then with probability tending
1, forall 1 <4,j <p, and |u — 0 ;| < Cy,

By (u, A) < NNy thij(u) < Bjfy(u, A), (82)
where
A = ho}ol/? + 2log(2)Ko/(a;;N2) and  h = a/Na. (83)
Note if
” ”+2a”A<1 (84)

then Bj(u, A) exists real roots. Denote the smaller one as u*, which satisfies u* <

Gij + v, 4 2A. Take af ; = aual/Qal/z. By Step 3 and Assumption 2.3, if (84), then

o o P (ut — 0ij) = O{m_ﬂ/(BH) +m*/n® +a;;+h+ mKo/(a;k’jn)}. (85)

2,2 157
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Similar bound can be obtained for u~ as well. When (82) holds, u~ < ¢;; < u'. Take

o} ; = (m/n)"/?, then with probability tending to 1,

0.0 2655 — 0u il S mTHED Lomd n? 4 (m/n) 2 + Ny log(np),

where the convergence is uniform for all 1 < 7,57 < p. Since there exists some constant
c1,¢o > 0, such that ¢; < 7;;/0;; < c2, and any 4,5 with probability tending to 1. Thus
the desired result follows. O

Proof of (i1). Same argument as for (i), except that we need to replace Step 2 by Step 2’
with z < Ny/log(np)?®. Then we obtain the desired result.
Step 2’. This step shows

P
Z P sup |hyj(u) — Ehyj(u)| > x(UZ-lijl-f)/Nz) < pPneee (86)
ij—1 lu—o;,|<Co

where ¢ and the constant in < are independent of n, p, i, j.
The proof follows similar argument as in Step 2 and Theorem 3 in Wu and Wu (2016).
m
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Figure 5: Visualization of one sample of simulated data with jump in case a),2),ii).

represent ¢ and xy represents i.

Data
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Figure 6: Visualization of the real (left) and estimated correlation matrix (using the robust

estimation method).
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