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Abstract. Analysis on network data is becoming increasingly important in various fields of

data science, and the literature on statistical modelling and estimation algorithms for networks

is rapidly growing. However, general statistical inference methods for networks are still less de-

veloped. This article develops concept of nonparametric likelihood for network data based on the

network moments, and proposes general inference methods by adapting the theory of jackknife

empirical likelihood. Our methodology can be used not only to conduct inference on popu-

lation network moments and parameters in network formation models, but also to implement

goodness-of-fit testing, such as testing block size for stochastic block models. Theoretically we

show that the jackknife empirical likelihood statistic loses its asymptotic pivotalness under the

sparse network asymptotics and develop a modified statistic which converges to a chi-squared

distribution under both the sparse and dense network asymptotics.

1. Introduction

Analysis on network data is becoming increasingly important in various fields of data sci-
ence, such as social networks, technological networks for communications, transportation, and
energy, biological networks for food webs and protein interactions, and information networks for
collaborations and semantic relationships (see, e.g., Kolaczyk, 2009, for a review). With this
surge of various network data as a background, there is a rapidly growing literature on modelling
and estimation for network data (see, Crane, 2018, for a survey on recent developments). In
particular, based on the Aldous-Hoover representation result for exchangeable random arrays
(see, Kallenberg, 2005), various statistical models and their sampling properties are studied for
network data viewed as exchangeable random graphs; see, e.g., Bickel and Chen (2009), Bickel,
Chen and Levina (2011), Bickel et al. (2013), Chatterjee, Diaconis and Sly (2011), Diaconis
and Janson (2008), and Hoff, Raftery and Handcock (2002). Given this literature on modelling
and estimation for network data, substantial progress has been made in recent years for infer-
ence methods, such as uncertainty quantification for network moments or functionals, parameter
hypotheses testing and goodness-of-fit testing; see references below.

In this article, we develop concept of nonparametric likelihood for network data based on
the network moments, and proposes general inference methods by adapting the theory of jack-
knife empirical likelihood. The method of jackknife empirical likelihood proposed by Jing, Yuan
and Zhou (2009) is an extension of Owen’s (1988) empirical likelihood for U-statistics, and con-
structs a likelihood function for estimating equations based on jackknife pseudo values for the
U-statistics. Based on the method of moments estimator by Bickel, Chen and Levina (2011), we
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introduce its jackknife pseudo values by using delete-one vertex subgraphs, construct an empir-
ical likelihood function, and study its asymptotic properties under the possibly sparse network
model of Bickel and Chen (2009). As in Bickel and Chen (2009), our methodology is general
enough to cover various network models (e.g., stochastic block models, preferential attachment
models, and random dot product graph models), and can be used not only to conduct infer-
ence on population network moments and parameters in network models, but also to implement
goodness-of-fit testing, such as testing block size for stochastic block models.

Theoretically this paper makes two contributions. First, we show that the jackknife empiri-
cal likelihood statistic loses its asymptotic pivotalness and converges to a weighted chi-squared
distribution under the sparse network asymptotics, where the edge formation probability ρn is
of order O(n−1) for the number of vertices n. We argue that this lack of asymptotic pivotalness
is understood as emergence of Efron and Stein’s (1981) bias of the jackknife variance estimator
in the first order. Second, we develop a modified empirical likelihood statistic to recover asymp-
totic pivotalness and converges to a chi-squared distribution under both the dense and sparse
network asymptotics (i.e., emergence of Wilks’ phenomenon). The basic idea is to incorporate
leave-two-out adjustments as in Hinkley (1978) and Efron and Stein (1981) into the estimating
equations by the jackknife pseudo values.

Recently several authors proposed inference methods for network data. Bhattacharyya and
Bickel (2015) developed subsampling methods for smooth functions of network moments. Green
and Shalizi (2017) proposed bootstrap procedures based on the empirical graphon. Levin and
Levina (2019) proposed a two-step bootstrap procedure involving estimating the latent positions
under the assumption of a random dot product graph. Lin, Lunde and Sarkar (2020a) showed
that the network jackknife procedure leads to conservative estimates of the variance for network
functionals. They also showed the consistency of the jackknife variance estimates for count func-
tionals under some sparsity conditions. Lin, Lunde and Sarkar (2020b) proposed a multiplier
bootstrap procedure for count functionals and showed that it exhibits higher-order correctness
under appropriate sparsity conditions. In contrast to these papers employing some resampling
methods, this paper proposes a nonparametric likelihood-based inference method based on jack-
knife empirical likelihood. Also we emphasize that this paper considers inference under more
general conditions on the sparsity level. In particular, the above papers exclude the case of
ρn = O(n−1), which is analyzed in Bickel, Chen and Levina (2011) as a sparse case but inference
for this case is an open question.

This paper is organized as follows. In Section 2, we introduce our setup and jackknife empirical
likelihood for network moments, derive its asymptotic properties and develop a modified statistic
to recover asymptotic pivotalness for the scalar case (Section 2.1) and vector case (Section 2.2).
Section 3 presents goodness-of-fit testing based on our empirical likelihood approach, which covers
block size testing for stochastic block models. Sections 4 and 5 illustrate our methodology by a
simulation study and real data example, respectively. All proofs and derivations are contained
in Appendix.
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2. Empirical likelihood

Consider a random graph Gn on vertices 1, . . . , n represented by an n × n adjacency matrix
A, where Aij = 1 if there is an edge from node i to j and 0 otherwise. We assume that the graph
is undirected (i.e., A is symmetric) and contains no self-loops (i.e., diagonals of A are all zero).
Let P be the probability measure of A and E be its expectation.

A subset R = {(i, j) : 1 ≤ i < j ≤ n} is identified by the edge set E(R) = R and the vertex set
V(R) = {i : (i, j) or (j, i) ∈ R for some j}. Typical examples of R include particular patterns,
such as triangles, stars, and wheels. Let Gn(R) be the subgraph induced by V(R). We are
interested in occurrence probability of R, that is

P (R) = P{E(Gn(R)) = R}.

Let Iso(R) be the set of subgraphs that are isomorphic to R in Gn and |Iso(R)| be its number
of elements.1 Bickel, Chen and Levina (2011) proposed to estimate P (R) by

P̂ (R) =
1(

n
p

)
|Iso(R)|

∑
S∈G

I{S ∼ R}, (1)

where p is the numbers of vertices and isomorphic subgraphs of R, G is the set of all subgraphs of
Gn, and I{·} is the indicator function. Obviously P̂ (R) is unbiased for P (R), and Bickel, Chen
and Levina (2011) established the asymptotic distribution of P̂ (R).

In this paper, we regard P̂ (R) − P (R) as an estimating equation for P (R) and construct
the jackknife empirical likelihood function to conduct inference on P (R). More precisely, we
introduce the jackknife pseudo value:

Vi = nP̂ (R)− (n− 1)P̂−i(R),

where P̂−i(R) is the leave-i counterpart of P̂ (R) defined as

P̂−i(R) =
1(

n−1
p

)
N(R)

∑
S∈Gi

I{S ∼ R},

and Gi is the set of all subgraphs that do not contain the i-th vertex. Since 1
n

∑n
i=1(Vi−P (R)) =

P̂ (R)− P (R), the contrast Vi − P (R) can be employed as an estimating function for P (R).
More generally, for fixed sets {R1, . . . , Rk}, we can analogously define the estimators (P̂ (R1), . . . , P̂ (Rk))

and the vector of jackknife pseudo values Vi = (V1i, . . . , Vki)
′ for θ = (P (R1), . . . , P (Rk))

′. Based
on this notation, we construct the jackknife empirical likelihood function for θ as

`(θ) = −2 sup
{wi}ni=1

n∑
i=1

log(nwi), s.t. wi ≥ 0,
n∑
i=1

wi = 1,
n∑
i=1

wi(Vi − θ) = 0.

By applying the Lagrange multiplier method, the dual form of `(θ) is written as

`(θ) = 2 sup
λ

n∑
i=1

log(1 + λ′(Vi − θ)). (2)

1Two graphs R1 and R2 are called isomorphic (denoted by R1 ∼ R2) if there exists a one-to-one map σ of V (R1)
to V (R2) such that the map (i, j)→ (σi, σj) is one-to-one from E(R1) to E(R2).
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In practice, we use this dual form to implement empirical likelihood inference. In the next
subsections, we study asymptotic properties of the empirical likelihood statistic `(θ) for the
cases where θ is scalar (Section 2.1) and θ is a vector (Section 2.2).

2.1. Case of scalar θ. This subsection considers the case of d = 1, where θ, P (R), P̂ (R), and Vi
are scalar and the empirical likelihood function is written as `(θ) = 2 supλ

∑n
i=1 log(1+λ(Vi−θ)).

We first note that the estimator P̂ (R) in (1) can be written as

P̂ (R) =
1(
n
p

) ∑
1≤i1<···<ip≤n

Yi1...ip(R),

where
Yi1...ip(R) =

1

N(R)

∑
S∼R

∏
(ik,il)∈S

Aikil
∏

(ik,il)∈S̄

(1−Aikil),

is a jointly exchangeable array and S̄ = {(i, j) /∈ S, i ∈ V (S), j ∈ V (S)}. For example, (i)
if R is an “edge”, then p = 2 and Yij(R) = Aij ; (ii) if R is a “triangle”, then p = 3 and
Yijl(R) = AijAjlAil; and (iii) if R is a “2-star” (or (1, 2)-wheel), then p = 3 and Yijl(R) =
1
3{AijAjl(1−Ail) +Aij(1−Ajk)Ail + (1−Aij)AjlAil}.
Let ρn = P{Aij = 1} be the edge occurrence probability. In our setup, the parameter P (R)

typically depends on n, and note that dn = (n− 1)ρn is the expected degree. As in Bickel, Chen
and Levina (2011), this paper is mainly concerned with the case of ρn → 0, and we call networks
with nρn →∞ and nρn → C ∈ (0,∞) as dense and sparse networks, respectively.

To study the asymptotic properties of P̂ (R) and `(θ), we employ the nonparametric latent
variable model in Bickel, Chen and Levina (2011) and Bhattacharyya and Bickel (2015):

Aij = I{ξij ≤ ρnw(ξi, ξj) ∧ 1}, (3)

for i, j ∈ {1, . . . , n}, where (ξ1, . . . , ξn, ξ11, . . . , ξnn) are iid U(0, 1), and w(·, ·) is positive, sym-
metric, and

∫ 1
0

∫ 1
0 w(s, t)dsdt = 1. This model is derived from a general representation theorem of

the adjacency matrix A (Bickel and Chen, 2009) and is flexible to cover popular network forma-
tion models, such as stochastic block models, latent variable models, and preferential attachment
models (see, Kolaczyk, 2009, for a review).

Let N̄ consist of all finite sequences (i1, . . . , ip) with distinct entries i1, . . . , ip ∈ N. By using
the latent variables in (3), there exists a measurable function f : [0, 1]1+p+(p−1)p/2 → [0, 1] such
that

Yi1...ip(R) = f(µ, ξi1 , . . . , ξip , ξi1i2 , . . . , ξip−1ip),
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for each (i1, . . . , ip) ∈ N̄, where µ ∼ U(0, 1) corresponds to the mixing distribution in de Finetti’s
theorem and is not identifiable. To proceed, we introduce some notation. Let

g1(1) = E[Y1...p|ξ1]− E[Y1...p],

g2(12) = E[Y1...p|ξ1, ξ2, ξ12]− g1(1)− g1(2)− E[Y1...p],

g3(123) = E[Y1...p|ξ1, ξ2, ξ3, ξ12, ξ13, ξ23]−
3∑
i=1

g1(i)−
∑

1≤i1<i2≤3

g2(i1i2)− E[Y1...p],

...

gp(12 . . . p) = E[Y1...p|ξ1, . . . , ξp, ξ12, . . . , ξp−1,p]−
p∑
i=1

g1(i)−
∑

1≤i1<i2≤p
gp(i1i2)

− · · · −
∑

1≤i1<···<ip−1≤p
gp−1(i1 . . . ip−1)− E[Y1...p].

Note that Y1...p = E[Y1...p|ξ1, . . . , ξp, ξ12, . . . , ξp−1,p]. Let |R| = |E(R)| be the number of edges in
R. Based on the above notation and repeated add and subtractions, the estimation error admits
the following ANOVA-type decomposition

ρ−|R|n {P̂ (R)− P (R)} =
1

n

n∑
i=1

βi +
1

n2

∑
i1<i2

βi1i2 + · · ·+ 1

np

∑
i1<···<ip

βi1...ip , (4)

where

βi = ρ−|R|n pg1(i), βi1i2 = ρ−|R|n 2!

(
p

2

)
g2(i1i2), . . . , βi1...ip = ρ−|R|n p!gp(i1 . . . ip).

Note that all the random variables on the right side of (4) have zero mean and no correlation.
This paper focuses on the cases, where (I) R is a wheel, and (II) R is a cyclic graph.2 In

Section A.1, we show that for Case (I), it holds

1

n

n∑
i=1

βi = Op

(
1√
n

)
,

1

ns

n∑
i1<···<is

βi1...is = Op

(
1√

nsρs−1
n

∨ 1√
ns

)
, (5)

for s = 2, . . . , p. Thus, for dense networks (i.e., nρn → ∞), the linear term 1
n

∑n
i=1 βi will be a

leading term in (4). On the other hand, for Case (II), it holds

1

n

n∑
i=1

βi = Op

(
1√
n

)
,

1

ns

n∑
i1<···<is

βi1...is = Op

(
1√

nsρs−1
n

∨ 1√
ns

)
, for s = 2, . . . , p− 1,

1

np

n∑
i1<···<ip

βi1...ip = Op

(
1√
npρpn

∨ 1√
np

)
. (6)

The difference of the orders for s = p is due to different orders of the variances in the main term of
βi1...ip . For Case (II), we need the condition nρn →∞ for the consistency, ρ−|R|n {P̂ (R)−P (R)} p→

2A (k, l)-wheel is a graph with kl+1 vertices and kl edges isomorphic to the graph with edges {(1, 2), . . . , (k, k+
1); (1, k+2), . . . , (2k, 2k+1); . . . , (1, (l− 1)k+2), . . . , (lk, lk+1)}). See Bickel, Chen and Levina (2011, p. 2286).
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0, due to the last term in (6). Hence 1
ns

∑n
i1<···<is βi1...is = op

(
1
n

∑n
i=1 βi

)
for s = 2, . . . , p − 1.

If np−1ρpn →∞ (i.e., npρpn/n→∞), then the limiting distribution of P̂ (R) is determined by the
linear term 1

n

∑n
i=1 βi. If n

p−1ρpn = O(1) (i.e., npρpn/n = O(1)), then the limiting distribution of
P̂ (R) is determined by the linear and last terms.

The limiting distribution of the jackknife empirical likelihood `(θ) is obtained as follows. Define
σ2
s,n = V(β1...s) for s = 1, . . . , p, and σ2

∗ = limn→∞(σ2
n/ωn), where

ωn =
σ2

1,n

n
+
σ2

2,n

2n2
+
σ2

3,n

6n3
+ · · ·+

σ2
p,n

p!np
,

σ2
n =

σ2
1,n

n
+
σ2

2,n

n2
+
σ2

3,n

2n3
+ · · ·+

σ2
p,n

(p− 1)!np
.

Theorem 1. Consider the setup of this section. Suppose ρn → 0.
Case (I): If R is a wheel, then

`(θ)
d→

χ2
1 under nρn →∞ and E[β1|ξ1] is random,

σ−2
∗ χ2

1 otherwise.

Case (II): If R is cyclic and nρn →∞, then

`(θ)
d→

χ2
1 under np−1ρpn →∞ and E[β1|ξ1] is random,

σ−2
∗ χ2

1 otherwise.

This theorem shows that the limiting distribution of the jackknife empirical likelihood statistic
`(θ) depends on the behavior of the expected degrees nρn. If the network is dense in the sense that
nρn →∞ (for Case (I)) or np−1ρpn →∞ (for Case (II)) and the term E[β1|ξ1] is random, then the
jackknife empirical likelihood statistic is asymptotically pivotal. However, for sparse networks
with nρn 9∞ and possibly degenerate E[β1|ξ1], the jackknife empirical likelihood statistic is no
longer asymptotically pivotal and its limiting distribution depends on σ2

∗ = limn→∞(σ2
n/ωn). It

is interesting to note that the discrepancies of the coefficients in σ2
n and ωn can be understood

as Efron and Stein’s (1981) bias in this context. In other words, the Efron-Stein bias for the
jackknife variance estimator emerges in the first-order asymptotics under the sparse network
asymptotics.

The case where E[β1|ξ1] becomes random corresponds to non-degeneracy of the U-statistic in
the current context (see also Menzel, 2018). This only excludes the possibility that E[Y1···p|ξ1]

has a non-degenerate distribution, where the conditional means given ξ1 happen to be close
to constant. We note that this degeneracy yields a non-standard limiting distribution of `(θ)
only when ρn = O(1) (i.e., the network is very dense), which is excluded in the above theorem.

In particular, the terms of order Op
(√

1
ns

)
in (5) and (6) will induce non-standard limiting

behaviors.
Our next step is to modify the jackknife empirical likelihood statistic to recover asymptotic

pivotalness. To this end, we employ the bias correction method suggested by Efron and Stein
(1981) and modify the JEL statistic as follows. Let P̂−i1,...,−ip(R) be the leave-(i1, . . . , ip)-out
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version of P̂ (R), and define

Mi1...ip = nP̂ (R)− (n− 1)

(
p∑
i=1

P̂−i(R)

)
+ (n− 2)

(
p∑

i1<i2

P̂−i1,−i2(R)

)
+ · · ·

+(−1)p(n− p)P̂−i1,...,−ip(R).

These terms are used in Efron and Stein (1981) to correct the higher-order bias of the jackknife
variance estimator. Since Mi1...ip is asymptotically expressed as a function of βi1...ip ’s but not
βi1...is ’s with s < p (see, proof of Lemma 1), it can be used to adjust mismatch in the variance
components of σ2

∗ due to Efron and Stein’s bias.
By using these terms, we modify the jackknife empirical likelihood statistic as

`m(θ) = 2 sup
λ

n∑
i=1

log(1 + λV m
i (θ)), (7)

where V m
i (θ) = (Vi − θ̂) + Γ̂Γ̃−1(θ̂ − θ) with θ̂ = P̂ (R), and Γ̂ and Γ̃ are given by

Γ̂ =

√√√√ n∑
i=1

(Vi − θ̂)2, (8)

Γ̃ =

√√√√ n∑
i=1

(Vi − θ̂)2 −
n∑

i1<i2

M2
i1i2
− · · · − (−1)p

n∑
i1<···<ip

M2
i1...ip

.

The asymptotic property of the modified jackknife empirical likelihood statistic is obtained as
follows.

Theorem 2. Consider the setup of this section. Suppose ρn → 0.
Case (I): If R is a wheel, then `m(θ)

d→ χ2
1.

Case (II): If R is cyclic and nρn →∞, then `m(θ)
d→ χ2

1.

This theorem says that the modified jackknife empirical likelihood statistic `m(θ) is asymp-
totically pivotal and converges to the χ2

1 distribution regardless of sparsity of the network (i.e.,
nρn →∞ or not for Case (I) and np−1ρpn →∞ or not for Case (II)). Also, these limiting behav-
iors are robust to degeneracy of the component E[β1|ξ1]. Based on this result, the asymptotic
1− α confidence set for θ can be obtained as ELCIα = {θ : `m(θ) ≤ χ2

1,α} for the 1− α critical
value of the χ2

1 distribution.

2.2. Case of vector θ. For a vector case, we can apply the decomposition in (4) for each
element in the vector (P̂ (R1) − P (R1), . . . , P̂ (Rk) − P (Rk)) with corresponding components
{β(j)

i , . . . , β
(j)
i1...ipj

} for j = 1, . . . , k. Define σ(j,h)2
s,n = E[β

(j)
i1...is

β
(h)
i1...is

] for s = 1, . . . , p, and

Ωn = k × k matrix with (j, h)-th element
σ

(j,h)2
1,n

n
+
σ

(j,h)2
2,n

2n2
+
σ

(j,h)2
3,n

6n3
+ · · ·+

σ
(j,h)2
pj∧ph,n

p!npj∧ph
, (9)

Σn = k × k diagonal matrix with (j, h)-th element
σ

(j,h)2
1,n

n
+
σ

(j,h)2
2,n

n2
+
σ

(j,h)2
3,n

2n3
+ · · ·+

σ
(j,h)2
pj∧ph,n

(p− 1)!npj∧ph
.
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Based on the above notation, the limiting distribution of the jackknife empirical likelihood statis-
tic `(θ) in (2) is obtained as follows. To simplify the presentation, we only present the result for
Case (I).

Theorem 3. Consider the setup of this section. Suppose ρn → 0, and Ωn and Σn are positive
definite for all n large enough. If (R1, . . . , Rk) are wheels, then

`(θ)
d→ ζ ′Σ∗−1ζ,

where Σ∗ = limn→∞Ω
−1/2
n ΣnΩ

−1/2
n and ζ ∼ N(0, Ik).

Since the proof is similar to that of Theorem 1, it is omitted. Similar to Theorem 1 for the case
of scalar θ, the jackknife empirical likelihood statistic is not asymptotically pivotal and depends
on the unknown component Σ∗. When nρn →∞ and E[β

(j)
1 |ξ1] is random for all j = 1, . . . , k, we

can recover asymptotic pivotalness as `(θ) d→ χ2
k. The discrepancies of the coefficients in Σn and

Ωn can be understood as Efron and Stein’s (1981) bias in this context. Note that the variance
components Σn and Ωn only contain the covariance terms up to the order pj ∧ ph. This is due
to uncorrelatedness of β(j)

i1...is
’s.

Analogous results can be derived for the case where some or all of (R1, . . . , Rk) are cyclic. In
this case, we need to impose the additional condition nρn →∞.

To recover asymptotic pivotalness for the case of vector θ, the jackknife empirical likelihood
statistic is modified as follows

`m(θ) = 2 sup
λ

n∑
l=1

log(1 + λ′V m
i (θ)), (10)

where V m
i (θ) = (Vi − θ̂) + Γ̂Γ̃−1(θ̂− θ) with θ̂ = (P̂ (R1), . . . , P̂ (Rk))

′, and Γ̂ and Γ̃ are given by

Γ̂Γ̂′ =
n∑
i=1

(Vi − θ̂)(Vi − θ̂)′,

Γ̃Γ̃′ = k × k matrix with (j, h)-th element
n∑
i=1

(V
(j)
i − θ̂(j))(V

(h)
i − θ̂(h))−

∑
i1<i2

M
(j)
i1i2

M
(h)
i1i2
− · · · − (−1)pj∧ph

∑
i1<···<ipj∧ph

M
(j)
i1...ipj∧ph

M
(h)
i1...ipj∧ph

.

The asymptotic property of the modified jackknife empirical likelihood statistic is obtained as
follows.

Theorem 4. Consider the setup of this section. Suppose ρn → 0, and Ωn and Σn are positive
definite for all n large enough. If (R1, . . . , Rk) are wheels, then

`m(θ)
d→ χ2

k.

Also the same result can be obtained even if some or all of (R1, . . . , Rk) are cyclic under the
additional condition nρn →∞.

Since the proof is similar to that of Theorem 2, it is omitted. Similar comments to Theorem
2 apply. Even for the vector θ case, the modified jackknife empirical likelihood statistic `m(θ) is
asymptotically pivotal and converges to the χ2

k distribution regardless of sparsity of the network.
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Finally we note that this theorem can be modified to deal with the case where the object of
interest is a smooth function of θ, say ϑ = h(θ). One important example is the transitivity index
ϑ = P (R1)/{P (R1) + P (R2)}, where R1 is a 3-cycle and R2 is a (1,2)-wheel. In this case, an
analogous argument to Hall and La Scala (1990, Theorem 2.1) yields

`m(ϑ) = min
h(θ)=ϑ

`m(θ)
d→ χ2

dim(ϑ).

3. Goodness-of-fit tests

In this section, we develop a goodness-of-fit test using empirical likelihood.

3.1. Stochastic block model. Consider the function w(·, ·) in (3) corresponding to a K-block
model defined by parameters η ≡ (π, ρn, S), where π is a K × 1 vector of probabilities for block
assignment, and a K ×K matrix S satisfies

Fab ≡ P{Aij = 1|i ∈ a, j ∈ b} = ρnSab,

for a, b = 1, . . . ,K. The number of free parameters in the block model is K − 1 for π and
K(K + 1)/2 for F . Note that ρn is determined by

∑K
a=1

∑K
b=1 Fab = ρn. For example, when

K = 3, the number of free parameter is 8, which can be identified by 8 moments. In this
subsection, we consider goodness-of-fit (or block size) testing: H0 : K = K0 for some specified
value K0 versus H1 : K > K0.

Let L2(0, 1) be the L2 space for functions defined on the interval (0, 1), and T : L2(0, 1) →
L2(0, 1) be an operator defined by

[Tf ](u) =

∫ 1

0
h(u, v)f(v)dv,

where h(u, v) = ρnw(u, v). For stochastic block models, it is convenient to consider the moment
Q(R) = P{Aij = 1, for all (i, j) ∈ R}. Note that Q(R) is written by using P (·) as

Q(R) =
∑
{P (S) : S ⊃ R,V(S) = V(R)},

where R ⊂ S refers to S ⊂ {(i, j) : i, j ∈ V(R)} (see, Proposition 1 of Bickel, Chen and Levina,
2011).

From Bickel, Chen and Levina (2011, Theorem 2), stochastic block models are generally
identified by some set of wheels. Therefore, this subsection focuses on the case where R’s are
wheels. If the graph R is a (k, l)-wheel, it can be written as

Q(R) = E

 ∏
(i,j)∈E(R)

h(ξi, ξj)

 = E

E
∏

(i,j)

h(ξi, ξj) : (i, j) ∈ E(R)

∣∣∣∣∣∣ ξ1


= E

[(∫ 1

0
· · ·
∫ 1

0
h(ξ1, ξ2) · · ·h(ξk, ξk+1)dξ2 · · · ξk+1

)l]
= E[{T k(1)(ξ1)}l].
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Based on this formula, we can compute the moment, say Q(R; η), implied from a given η =

(π, ρn, S).3

For wheels (R1, . . . , Rk), we consider the estimator Q̂(Rj) =
∑
{P̂ (S) : S ⊃ Rj ,V(S) =

V(Rj)} of the moment Q(Rj , η) for j = 1, . . . , k. Then the jackknife pseudo value can be defined
as

Vji = nQ̂(Rj)− (n− 1)Q̂−i(Rj),

for j = 1, . . . , k. Then the modified jackknife empirical likelihood function `m(η) can be defined
as in (10) by setting

V m
i (η) = (Vi − θ̂) + Γ̂Γ̃−1(θ̂ − θ(η)), (11)

where Vi = (V1i, . . . , Vki)
′, θ̂ = (Q̂(R1), . . . , Q̂(Rk))

′, θ(η) = (Q(R1; η), . . . , Q(Rk; η))′, and Γ̂ and
Γ̃ are defined as in (8) by replacing {P̂ (R1), . . . , P̂ (Rk)} with {Q̂(R1), . . . , Q̂(Rk)}. Then the
goodness-of-fit statistic based `m(θ) on is defined as

Tn = min
η∈Υ

`m(η), (12)

and the asymptotic property of this statistic is presented as follows.

Theorem 5. Consider the setup of this subsection. Assume (i) there exists a unique η0 ∈ int(Υ)

such that Q(Rj) = Q(Rj ; η0) is satisfied for all j = 1, . . . k, and Υ is compact, (ii) θ(η) is
continuously differentiable in a neighborhood of η0 and ∂θ(η0)/∂η′ has the full column rank,
and (iii) Ωn and Σn defined in (9) are positive definite for all n large enough. Then under
H0 : K = K0, it holds

Tn
d→ χ2

k−dim(η0),

Also under H1 : K > K0, it holds

P{Tn > χ2
k−dim(η0),α} → 1,

for the 1− α quantile of the χ2
k−dim(η0),α distribution.

The proof is similar to that of Theorem 4 with modifications for the overidentified case as
in Qin and Lawless (1994, Corollary 4). Assumptions are standard for overidentified models.
Identification of η0 needs to be verified for each application (see, Theorem 2 of Bickel, Chen and
Levina, 2011, for stochastic block models).

3.2. Other network models. The goodness-of-fit testing approach in the previous subsec-
tion can be applied to other network models. Once we specify the function w(·, ·; η) in (3)
with parameters η, we can take a set of subgraphs (R1, . . . , Rk) and characterize the moments

3For example, when K = 2, it can be written as T (1)(ξ) = v1 for ξ ∈ [0, π1] and v2 for ξ ∈ (π1, 1], where
vj = π1F1j + (1− π1)F2j with v1 < v2. Let Wkl be a (k, l)-wheel. Thus the first three moments of T (1)(ξ) are

E[{T (1)(ξ)}l] = E[Q(W1l)] = π1v
l
1 + (1− π1)v

l
2,

for l = 1, 2, 3. Similarly, we have T (1)2(ξ) = π1v1F11 + (1− π1)v1F21 for ξ ∈ [0, π1] and π1v1F12 + (1− π1)v2F22

for ξ ∈ (π1, 1]. Thus, the first three moments of T (1)2(ξ) are

E[{T (1)2(ξ)}l] = E[Q(W2l)] = π1{π1v1F11 + (1− π1)v2F21}l + (1− π1){π1v1F12 + (1− π1)v2F22}l.
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θ(η) = (Q(R1; η), . . . , Q(Rk; η))′ implied from the model w(·, ·; η). Then the jackknife empirical
likelihood goodness-of-fit statistic is obtained as in (11) and (12).

For example, the preferential attachment model, where the m+ 1-th vertex attaches to one of
the preceding m vertices with probability proportional to degree, may be tested by setting (see,
Section 5.3 of Bickel, Chen and Levina, 2011)

w(u, v) = (1− u)−1/2(1− v)−1/2.

Other examples include the β-model with w(u, v) = exp(u + v)/{1 + exp(u + v)} (see, e.g.,
Chatterjee, Diaconis and Sly, 2011), and the random threshold graphs with w(u, v) = I{F (u) +

F (v) ≥ α} for some cumulative distribution function F and α > 0 (see, e.g., Diaconis, Holmes
and Janson, 2008).

4. Simulation

This section conducts a simulation study to evaluate the finite sample properties of the jack-
knife empirical likelihood inference methods. In particular, we focus on the jackknife empirical
likelihood inference under the sparse network asymptotics in Section 2, and consider a stochastic
block model with K = 2 equal-sized communities and the following edge probabilities

Fab = P (Aij = 1|i ∈ a, j ∈ b) = snSab, for 1 ≤ a, b ≤ K.

We set S =

(
0.6 0.4

0.4 0.4

)
and vary sn such that θn = π′Fπ ∈ (0.5, 0.1, 0.05) with π = (0.5, 0.5)′.

The network size is n = 100.
We compare four methods to construct confidence intervals for (i) (1, 2)-wheels and (ii) 3-cycles

(or triads or triangles): (i) Wald-type confidence interval (Wald), which is defined as [θ̂± 1.96σ̂]

with σ̂2 = n−1
n

∑n
i=1(θ̂(i) − θ̂)2, (ii) bootstrap confidence interval (Boot), which is defined as

[θ̂ − c∗97.5σ̂, θ̂ − c∗2.5σ̂] with the α-th percentile of the bootstrap approximation c∗α based on the
node resampling network bootstrap by Green and Shalizi (2017) with 999 bootstrap replications,
(iii) jackknife empirical likelihood confidence interval (JEL), and (iv) modified jackknife empirical
likelihood confidence interval (mJEL).

Tables 1 and 2 gives the empirical coverage rates and average lengths of the confidence intervals
above across 1,000 Monte Carlo replications for (i) (1, 2)-wheels and (ii) 3-cycles, respectively.
The nominal rate is 0.95. The main findings from the simulation study are in line with our
theoretical results. The Wald and jackknife empirical likelihood confidence intervals tend to
over-cover especially when the network is sparse, which verifies our theoretical results. The
bootstrap-based intervals are more accurate than the Wald and jackknife empirical likelihood, but
still tend to over-cover for sparse network. The modified jackknife empirical likelihood confidence
intervals are most robust to the sparsity of the network compared to the other intervals, and offer
close-to-correct empirical coverages in all cases. Furthermore, in terms of the average lengths of
the confidence intervals, the modified jackknife empirical likelihood outperforms other methods
for all cases.
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Coverage rates Average interval lengths
θn Wald Boot JEL mJEL Wald Boot JEL mJEL
0.5 0.978 0.965 0.983 0.946 0.0134 0.0124 0.0134 0.0113
0.1 0.982 0.960 0.987 0.944 0.0044 0.0037 0.0044 0.0033
0.05 0.983 0.938 0.989 0.947 0.0017 0.0014 0.0018 0.0013

Table 1. Coverage rates and average lengths of 95% confidence intervals for
R = (1, 2)-wheel with n = 100

Coverage rates
θn Wald Boot JEL mJEL
0.5 0.959 0.937 0.962 0.944
0.1 0.990 0.972 0.991 0.941
0.05 0.986 0.978 0.995 0.944

Table 2. Coverage rates and average lengths of 95% confidence intervals for
R = 3-cycle with n = 200

We also analyze the power properties of the tests for the null H0 : θn = θ0 against the
alternative hypotheses H1 : θn = θ0 + ∆ for ∆ ∈ (−0.02,−0.01, 0.01, 0.02). Table 2 gives
the calibrated powers of all the tests across 1,000 Monte Carlo replications, i.e., the rejection
frequencies of these tests, where the critical values are given by the Monte Carlo 95th percentiles
of these test statistics under H0. The results suggest that the proposed modified jackknife
empirical likelihood test exhibits good calibrated power.
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Appendix A. Mathematical Appendix

A.1. Proof of (5) and (6). For sets of edges S1, S2, define

W (S1, S2) =
∏

(ik,il)∈S1

w(ξik , ξil)
∏

(ik,il)∈S2

(1− ρnw(ξik , ξil)).

First, we note that

ρ−|R|n E[Yi1...ip |ξi1 ] =
1

N(R)

∑
S∼R

E[W (S, S̄)|ξi1 ], (13)

for all n large enough. Similarly, we have

ρ−|R|n E[Yi1...ip |ξi1 , . . . , ξis ] =
1

N(R)

∑
S∼R

E[W (S, S̄)|ξi1 , . . . , ξis ], (14)

ρ−|R|n E[Yi1...ip |ξi1 , ξi2 , ξi1i2 ]

=
1

N(R)

∑
S∼R
{ρ−1
n Ai1i2E[W (S \ (i1, i2), S̄)|ξi1 , ξi2 ] + (1−Ai1i2)E[W (S, S̄ \ (i1, i2))|ξi1 , ξi2 ]}, (15)

and

ρ−|R|n E[Yi1...ip |ξi1 , . . . , ξis , ξi1i2 , . . . , ξis−1is ]

=
1

N(R)

∑
S∼R

ρ−(s−1)
n

∏
(ik,il)∈S∩{(i1,i2),...,(is−1,is)}

Aikil
∏

(ik,il)∈S̄∩{(i1,i2),...,(is−1,is)}

(1−Aikil)

×E[W (S \ {(i1, i2), . . . , (is−1, is)}, S̄ \ {(i1, i2), . . . , (is−1, is)})|ξi1 , . . . , ξis ]

· · ·+ (1−Ai1i2) · · · (1−Ais−1is)× E[W (S, S̄ \ {(i1, i2), . . . , (is−1, is)})|ξi1 , . . . , ξis ]
}
, (16)

for s = 2, . . . , p− 1, and

ρ−|R|n E[Yi1...ip |ξi1 , . . . , ξis , ξi1i2 , . . . , ξip−1ip ] = ρ−|R|n

1

N(R)

∑
S∼R

∏
(ik,il)∈S

Aikil
∏

(ik,il)∈S̄

(1−Aikil). (17)

Based on these conditional moments, we now characterize stochastic orders of the right hand side of
(4). Note that all β’s in (4) have zero mean and no correlation. By (13), we have

V

(
1

n

n∑
i=1

βi

)
=

1

n
V(β1) =

p2

n
V
(
ρ−|R|n E[Y1...p|ξ1]

)
= O

(
1

n

)
,

which yields the first statements in (5) and (6).
Similarly, by (14) and (15), we have

V

(
1

n2

n∑
i1<i2

βi1i2

)
=

1

n4

(
n

2

)
V(β12) =

1

n4

(
n

2

)
E[V ar(β12|ξ1, ξ2)] +

1

n4

(
n

2

)
V(E[β12|ξ1, ξ2])

=
1

n4

(
n

2

)
(C1ρ

−1
n + C2ρn) +

1

n4

(
n

2

)
C3 = O

(
1

n2ρn

)
+O

(
1

n2

)
,

for some positive constants C1, C2, and C3, where the third equality follows from the fact that E[V(A12|ξ1, ξ2)] =

E[ρnw(ξ1, ξ2)(1− ρnw(ξ1, ξ2)] = O(ρn).
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Generally, we decompose

V

(
1

ns

n∑
i1<···<is

βi1...is

)
=

1

n2s

(
n

s

)
V(β1...s)

=
1

n2s

(
n

s

)
E[V(β1...s|ξ1, . . . , ξs)] +

1

n2s

(
n

s

)
V(E[β1...s|ξ1, . . . , ξs])

≡ M1 +M2.

For M2, by (14), we have

M2 = O

(
1

ns

)
. (18)

For M1, we first consider the case with s = 2, . . . , p− 1. By (16), the leading term of βi1...is is of the
form

β̃i1...is =
1

N(R)

∑
S∼R

ρ−(s−1)
n

∏
(ik,il)∈S∩{(i1,i2),...,(is−1is)}

Aikil
∏

(ik,il)∈S̄∩{(i1,i2),...,(is−1,is)}

(1−Aikil)

×E[W (S \ {(i1, i2), . . . , (is−1, is)}, S̄ \ {(i1, i2), . . . , (is−1, is)})|ξi1 , . . . , ξis ].

Since V
(∏

(ik,il)∈S∩{(i1,i2),...,(is−1,is)}Aikil |ξi1 , . . . , ξis
)

= Op(ρ
s−1
n ), it holds

V(β̃1...s|ξ1, . . . , ξs) = Op(ρ
−(s−1)
n ),

which implies

M1 = O

(
1

nsρs−1
n

)
, for s = 2, . . . , p− 1. (19)

We next consider the case with s = p. Note that |R| = p − 1 for Case (I) (i.e., R is a wheel), and
|R| = p for Case (II) (i.e., R is a cyclic). By the same argument to derive (19) combined with these orders
for |R|, we obtain for s = p,

M1 =

O
(

1

npρp−1
n

)
for Case (I),

O
(

1
npρpn

)
for Case (II).

(20)

Combining (18)-(20), the remaining statements in (5) and (6) follow by Chebyshev’s inequality.

A.2. Proof of Theorem 1. Since proofs are similar, we only present the proof for Case (I). First,
we prove the convergence to χ2

1 under the assumptions nρn → ∞ and E[Y1,...,p|ξ1] is random. By the
conventional argument (e.g., Owen, 1991), we can prove the asymptotic equivalence

`(θ) =

[
1

n

n∑
i=1

Vi(θ)
2

]−1(
1√
n

n∑
i=1

Vi(θ)

)2

+ op(1).

Thus, it is enough to show that

1
√
ωnn

n∑
i=1

ρ−|R|n Vi(θ)
d→ N(0, 1), (21)

1

ωnn2

n∑
i=1

ρ−2|R|
n Vi(θ)

2 p→ 1, (22)

where ωn = V ar(ρ
−|R|
n θ̂). Note that 1

n

∑n
i=1 Vi(θ) = θ̂ − θ. By (5), we get

V ar

(
1

n

n∑
i=1

ρ−|R|n Vi(θ)

)
= ωn =

σ2
1,n

n
{1 + o(1)},

Thus, (21) follows from the central limit theorem for U-statistics under our assumptions.
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For (22), we first note that
n∑
i=1

Vi(θ)
2 =

n∑
i=1

[
θ̂ − θ + (n− 1)(θ̂ − θ̂(i))

]2
= n(θ̂ − θ)2 + (n− 1)2

n∑
i=1

(θ̂ − θ̂(i))2

= n(θ̂ − θ)2 + (n− 1)2 1

n

∑
i<i′

(θ̂(i) − θ̂(i′))2, (23)

where the second equality follows from
∑n
i=1(θ̂ − θ̂(i)) = 0, and the third equality follows from a direct

calculation. Thus, we have

1

ωnn2

n∑
i=1

ρ−2|R|
n Vi(θ)

2 =
1

ωnρ
2|R|
n

[
1

n
(θ̂ − θ)2 +

(n− 1)2

n3

∑
i<i′

(θ̂(i) − θ̂(i′))2

]

=
(n− 1)2

ωnn3
ρ−2|R|
n

∑
i<i′

(θ̂(i) − θ̂(i′))2 + op(1)

=
(n− 1)2

ωnn3

∑
i<i′

{
1

n− 1
(βi′ − βi)

}2

+ op(1) =
n− 1

ωnn2
V ar(β1) + op(1)

p→ 1,

where the second equality follows from 1
ωnn

ρ
−2|R|
n (θ̂− θ)2 p→ 0 (by the consistency ρ−|R|n (θ̂− θ) p→ 0), and

the fourth equality follows from the law of large numbers.
Second, we consider the case where nρn = O(1) or E[Y1...p|ξ1] degenerates to a constant. For this case,

it is enough to show (21) and
1

ωnn2

n∑
i=1

ρ−2|R|
n Vi(θ)

2 p→ σ2
∗. (24)

Using the fact that the terms in (4) are uncorrelated, we get

V ar

(
1

n

n∑
i=1

ρ−|R|n Vi(θ)

)
= ωn =

(
σ2

1,n

n
+
σ2

2,n

2n2
+
σ2

3,n

6n3
+ · · ·+

σ2
p,n

p!np

)
{1 + o(1)}.

Thus, (21) follows from the central limit theorem for U-statistics under our assumptions.
For (24), we have

1

ωnn2

n∑
i=1

ρ−2|R|
n Vi(θn)2

=
1

ωnρ
2|R|
n

[
1

n
(θ̂ − θn)2 +

(n− 1)2

n3

∑
i<i′

(θ̂(i) − θ̂(i′))2

]
=

(n− 1)2

ωnn3
ρ−2|R|
n

∑
i<i′

(θ̂(i) − θ̂(i′))2 + op(1)

=
(n− 1)2

ωnn3

∑
i<i′

 1

n− 1
(βi′ − βi) +

1

(n− 1)2

(i,i′)∑
l1=1

(βi′l1 − βil1) + · · ·+ 1

(n− 1)p

(i,i′)∑
l1<···<lp−1

(βi′l1...lp−1
− βil1...lp−1

)


2

+op(1)

=
(n− 1)2

ωnn2

[
σ2

1,n

n− 1
+

(
n− 2

1

)
σ2

2,n

(n− 1)3
+

(
n− 2

2

)
σ2

3,n

(n− 1)5
+ · · ·+

(
n− 2

p− 1

)
σ2
p,n

(n− 1)2p−1

]
+ op(1)

=
(n− 1)2

ωnn2

[
σ2

1,n

n
+
σ2

2,n

n2
+
σ2

3,n

2n3
+ · · ·+

σ2
p,n

(p− 1)!np

]
+ op(1)

p→ σ2
∗,
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where the notation
∑(i,i′) indicates summations avoiding the values i and i′. The first equality follows

from (23), the second equality follows from 1
ωnn

ρ
−2|R|
n (θ̂− θ)2 p→ 0 (by the consistency ρ−|R|n (θ̂− θ) p→ 0),

and the fourth equality follows from the law of large numbers.

A.3. Proof of Theorem 2. Here we present the proof for the case of p = 3. As in the proof of Theorem
1, we can prove the asymptotic equivalence

`m(θ) =

[
1

ωnn2

n∑
i=1

V mi (θ)2

]−1(
1

√
ωnn

n∑
l=1

V mi (θ)

)2

+ op(1).

Thus, it is enough to show

1
√
ωnn

n∑
l=1

ρ−|R|n V mi (θ)
d→ N(0, σ2

∗), (25)

1

ωnn2

n∑
l=1

ρ−2|R|
n V mi (θ)2 p→ σ2

∗. (26)

A similar argument to (24) yields

1

ωnn2

n∑
l=1

ρ−2|R|
n Vi(θ̂)

2 p→ σ2
∗. (27)

Thus, the consistency ρ−|R|n (θ̂ − θ) p→ 0 implies (26).
It remains to show (25). Since

∑n
i=1 ρ

−|R|
n Vi(θ̂) = 0, we have

1
√
ωnn

n∑
i=1

ρ−|R|n V mi (θ) = Γ̂Γ̃−1 1
√
ωnn

n∑
i=1

ρ−|R|n Vi(θ)

=

√√√√ 1
ωnn2

∑n
i=1 Vi(θ̂)

2

1
ωnn2

∑n
i=1 Vi(θ̂)

2 − 1
ωnn2

∑n
i1<i2

M2
i1i2

+ 1
ωnn2

∑n
i1<i2<i3

M2
i1i2i3

1
√
ωnn

n∑
i=1

ρ−|R|n Vi(θ).

By (21), it holds 1√
ωnn

∑n
i=1 ρ

−|R|
n Vi(θ)

d→ N(0, 1). Also a similar argument to (24) yields 1
ωnn2

∑n
i=1 ρ

−2|R|
n Vi(θ̂)

2 p→
σ2
∗. Thus, for (25), it remains to show that

1

ωnn2

n∑
i=1

ρ−2|R|
n Vi(θ̂)

2 − 1

ωnn2

n∑
i1<i2

ρ−2|R|
n M2

i1i2 +
1

ωnn2

n∑
i1<i2<i3

ρ−2|R|
n M2

i1i2i3

p→ 1, (28)

which follows from Lemma 1.

Lemma 1. When p = 3, we have

1

ωnn2

∑
i<j

ρ−2|R|
n M2

ij =
1

ωn

[
σ2

2,n

2n2
+
σ2

3,n

2n3

]
+ op(1),

1

ωnn2

∑
i<j<k

ρ−2|R|
n M2

ijk =
1

ωn

[
σ2

3,n

6n3

]
+ op(1).
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Proof: By the expansion (4), we have

nρ−|R|n (P̂ (R)− P (R)) =

n∑
i=1

βi +
1

n

∑
i1<i2

βi1i2 +
1

n2

∑
i1<i2<i3

βi1i2i3 ,

(n− 1)ρ−|R|n (P̂−l(R)− P (R)) =

(l)∑
i

βi +
1

n− 1

(l)∑
i1<i2

βi1i2 +
1

(n− 1)2

(l)∑
i1<i2<i3

βi1i2i3 ,

(n− 2)ρ−|R|n (P̂−l,−l′(R)− P (R)) =

(l,l′)∑
i

βi +
1

n− 2

(l,l′)∑
i1<i2

βi1i2 +
1

(n− 2)2

(l,l′)∑
i1<i2<i3

βi1i2i3 ,

(n− 3)ρ−|R|n (P̂−l,−l′,−l′′(R)− P (R)) =

(l,l′,l′′)∑
i

βi +
1

n− 3

(l,l′,l′′)∑
i1<i2

βi1i2 +
1

(n− 3)2

(l,l′,l′′)∑
i1<i2<i3

βi1i2i3 .

where the notations
∑(l),

∑(l,l′), and
∑(l,l′,l′′) indicate summations avoiding the value l, the values l

and l′ and the values l, l′, and l′′, respectively. Then we have

ρ−|R|n (Vl − θ) = ρ−|R|n

{
n(P̂ (R)− P (R))− (n− 1)(P̂−l(R)− P (R))

}
= βl + (βl· − β··) + (βl·· − β(1)

··· ),

ρ−|R|n Mll′ = ρ−|R|n

{
nP̂ (R)− (n− 1)(P̂−l(R) + P̂−l′(R)) + (n− 2)P̂−l,−l′(R)

}
=

1

n− 2
(βll′ − βl· − βl′· + β··) + (βll′· − β(2)

··· ),

ρ−|R|n Mll′l′′ = ρ−|R|n

{
nP̂ (R)− (n− 1)

(
P̂−l(R) + P̂−l′(R) + P̂−l′′(R)

)
+(n− 2)

(
P̂−l,−l′(R) + P̂−l′,−l′′(R) + P̂−l,−l′′(R)

)
− (n− 3)P̂−l,−l′,−l′′(R)

}
=

1

(n− 3)2
(βll′l′′ − βl·· − βl′·· − βl′′·· + βll′· + βl′l′′· + βll′′· + β

(3)
··· ),

where βl· = 1
n−1

∑(l)
i βli, β·· = 1

n(n−1)

∑
l<l′ βll′ , βl·· = 1

(n−1)2

∑(l)
i<i′ βlii′ , βll′· = 1

(n−2)2

∑(l,l′)
i βll′i,

β
(1)
··· =

(
1

(n−1)2 −
1
n2

)∑
l<l′<l′′ βll′l′′ , β

(2)
··· =

((
1

(n−2)2 −
1
n2

)
− 2

(
1

(n−2)2 −
1

(n−1)2

))∑
l<l′<l′′ βll′l′′ , and

β
(3)
··· =

((
1

(n−3)2 −
1
n2

)
− 3

(
1

(n−3)2 −
1

(n−1)2

)
+ 3

(
1

(n−3)2 −
1

(n−2)2

))∑
l<l′<l′′ βll′l′′ .

Thus, the conclusion follows by the law of large numbers using the following moments

E

[
n∑
l=1

β2
l·

]
= E

 1

(n− 1)2

n∑
l=1

(l)∑
i

β2
li

 =
n

n− 1
σ2

2,n,

E

[
n∑
l=1

β2
l··

]
= E

 1

n(n− 1)4

n∑
l=1

(l)∑
i<i′

β2
lii′

 =
n2

2(n− 1)3
σ2

3,n,

E

[∑
l<l′

(
1

n− 2
βll′

)2
]

= E

[
1

(n− 2)2

∑
l<l′

β2
ll′

]
=

n(n− 1)

2(n− 2)2
σ2

2,n,

E

[∑
l<l′

β2
ll′·

]
= E

 1

(n− 2)4

∑
l<l′

(l,l′)∑
i

β2
ll′i

 =
n(n− 1)

2(n− 2)3
σ2

3,n,

E

[ ∑
l<l′<l′′

(
1

(n− 3)2
βll′l′′

)2
]

= E

[
1

(n− 3)4

∑
l<l′<l′′

β2
ll′l′′

]
=
n(n− 1)(n− 2)

6(n− 3)4
σ2

3,n,
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