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1 Introduction

The idea of forecast combination was introduced by Bates and Granger (1969), extended by Granger

and Ramanathan (1984), and spawned a large literature. For a recent overview of forecast combination

literature, see Elliott and Timmermann (2016). Granger and Jeon (2004) introduced the concept of

"thick modeling", which consists of making inference based on combined outputs from alternative

models.

In this paper we use bootstrap to consistently estimate the variance of a combined forecast and the

asymptotic covariance matrix of a weighted average of an estimated parameter vector using alternative

models with �xed weights. Our theoretical framework follows Hansen (2014) and Liu and Kuo (2016)

in generating forecasts by using weighted average of the predictions from a set of candidate models that

vary by the choice of auxiliary regressors adopted by forecasters. Thus, there is a panel of forecasting

models with di�erent sets of predictors.

We �rst show that a naïve bootstrap approach, which consists of stacking all residuals at time t

into a vector, and then resampling these cross-sectional vectors of residuals over time, is invalid in the

context of model averaging.1 Note that this naïve bootstrap approach is a common and natural way

to preserve cross-sectional dependence and is valid in other contexts, see for example Maddala and

Wu (1999), Gonçalves (2011) and Gospodinov and Ng (2013). See also the related work of Kilian and

Lütkepohl (2017 cf. Ch 12) in the context of bootstrapping VAR models, among others. In our context

of model averaging, the failure of this common approach is due to its inability to mimic appropriately

the behavior of the regression residuals from the full model. Due to the omitted variable biases in

approximating models, the naïve bootstrap approach induces an unwarranted additional term in the

bootstrap variance of averaging estimators. We then propose and theoretically justify two alternative

�xed-design residual-based bootstrap approaches for model averaging in predictive regressions. The

two proposed methods, the general blocking-based residual resampling and the general dependent wild-

based residual resampling, can preserve nonparametrically the cross-sectional dependence over di�erent

models and the time series dependence in the error term simultaneously.

Following Hjort and Claeskens (2003), Elliott et al. (2013), Hansen (2014), and Liu (2015), we

study the asymptotic properties of averaging estimators in a local asymptotic framework, where the

true regression coe�cients associated with the auxiliary regressors are in a local T−1/2 neighborhood

of zero. This framework ensures the consistency of the averaging estimators, while, in general, it

presents an asymptotic bias. We analyze the asymptotic distribution of averaging estimator with

both �xed weights and data-dependent weights. As discussed in Liu (2015), we �nd that for the

averaging estimator with �xed weights the asymptotic bias is a function of the local parameters,

whereas the asymptotic variance is not. For the averaging estimator with data-dependent weights,

both the asymptotic bias and the asymptotic variance are functions of the local parameters. Given

1Recently, Gonçalves and Perron (2020) show that a common approach of resampling cross-sectional vectors over time
is invalid in the context of factor-augmented regressions with cross-sectional dependence among idiosyncratic errors.
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that in the local asymptotic framework, the local parameters cannot be estimated consistently (see

e.g., Liu (2015)), it is not possible to provide a consistent estimator of the asymptotic mean squared

error (AMSE) of averaging estimator (with �xed weights and/or with data-dependent weights). So the

bootstrap estimate of the AMSE will be inconsistent, under drifting sequence of parameters.

For this reason, in order to be able to carry out our bootstrap analysis, we focus only on the

part of the AMSE of averaging estimator with �xed weights, which is consistently estimable, i.e., the

asymptotic variance. Our results support the �ndings of Hjort and Claeskens (2003) (cf. Section 10.6),

who showed that it is not possible to use bootstrap methods to consistently estimate the asymptotic

distribution of averaging estimators. This is because, in the local asymptotic framework, the asymp-

totic distribution of the averaging estimator is function of the local asymptotic parameters which are

not consistently estimable. Similarly, Liu (2015) showed that the asymptotic distribution of averaging

estimator with data-dependent weights cannot be approximated by simulation. In a related work,

Pötscher (2006) showed that the �nite sample distribution of the averaging estimator cannot be con-

sistently estimated. It should be pointed out that the proposed bootstrap approach analyzed in our

paper is not for model selection purposes. Furthermore, the bootstrap theory presented in our paper

(in a local asymptotic framework) is only applicable for averaging estimators based on �xed weights.

Nevertheless, in professional forecasting, reporting equally weighted averages under the name "consen-

sus forecasts" has been the norm rather than the exception, cf. Blue Chip Forecasts, the Survey of

Professional Forecasters etc..

In this paper, we show that although bootstrapping methods do not work to estimate consistently

the whole distribution of the weighted averaging estimator, it can be used to consistently estimate

the variance of the estimator with �xed weights. We show the validity of the bootstrap in estimating

the variance of a combined forecast and the asymptotic covariance matrix of the estimated combined

parameter based on di�erent models. We study and illustrate the general resampling residual-based

bootstrap approaches for a blocking-based and a dependent wild-based method. Speci�cally, regression

residuals are resampled by either the moving blocks bootstrap (MBB) of Künsch (1989) and Liu and

Singh (1992), the non-overlapping block bootstrap (NBB) of Carlstein (1986), the dependent wild

bootstrap (DWB) of Shao (2010), or the BEB method of Yeh (1998) and Shao (2011).

Gonçalves and White (2005) proved the consistency of the bootstrap covariance matrix estimator

in a time series regression context, but without model averaging. Hansen and Racine (2018) propose a

bootstrap model averaging procedure for testing unit roots. Recently Gonçalves et al. (2019) studied

conditions under which block bootstrap can be used to obtain valid standard errors of parameters

estimated via multi-stage QMLE estimators. In related work, Hahn and Liao (2019) studied the

relation between bootstrap consistency and consistency of bootstrap standard errors.

The bagging, also known as bootstrap aggregation or bootstrap smoothing introduced by Breiman

(1996), is a model-averaging device that reduces the variability and eliminates discontinuities of a

combined predictor. Even though the bagging method uses bootstrap, it was originally introduced to
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improve the accuracy of the estimators � rather than to approximate the distributions or improve the

con�dence interval of predictions. See e.g., the work of Bühlmann and Yu (2002) and Inoue and Kilian

(2008). Here, we are using the bootstrap to estimate the variance of a combined estimator with �xed

weights based on di�erent models.2

Our paper is organized as follows. Section 2 introduces the forecasting model, approximating

models and review the asymptotic results. In Section 3, we introduce the bootstrap method and prove

its consistency. Section 4 presents the simulation results. Section 5 provides an empirical illustration,

reexamining the Taylor rule estimates reported by Granger and Jeon (2004), based on bagging using

24 alternative models. Finally, Section 6 concludes. The mathematical proofs are relegated to the

Appendix.

2 Approximating Models

We consider the following h-step-ahead forecasting model

yt+h = x′tβ + z′tγ + et+h ≡ h′tθ + et+h, t = 1, . . . , T − h, (1)

E (htet+h) = 0, (2)

where h = 1, 2, 3 . . . , is the forecast horizon, yt+h is real-valued variable of interest, for example,

in�ation, GDP growth, unemployment rate and the like. xt = (x1t, x2t, . . . , xpt)
′ (p× 1) and zt =

(z1t, z2t, . . . , zqt)
′ (q × 1) are vectors of predictors such that ht =

(
h1t, h2t, . . . , h(p+q)t

)′
= (x′t, z

′
t)
′

((p+ q)× 1), θ = (β′, γ′)′ is the ((p+ q)× 1) vector of parameters and et+h is an unobservable error

term. We allow et+h to be heteroskedastic and serially correlated (formal assumptions are given in

Section 2.2).

We follow Liu (2015) and Liu and Kuo (2016), and interpret xt and zt as the core regressors and the

auxiliary regressors, respectively. The core regressors xt are of primary interest to researchers and must

be included in the model, while the auxiliary regressors zt may or may not included in the model. Then

researchers want xt in the model irrespective of the estimated t-ratios of the β-parameters, while they

are less certain in including regressors zt. The auxiliary regressors could be lags of yt, any nonlinear

transformations of the original variables, or the interaction terms between the regressors, see e.g., Liu

and Kuo (2016). As discussed in Magnus et al. (2010), Liang et al. (2011) and Liu (2015), the core

regressors xt may only include a constant term or even an empty matrix.

Suppose we have a set of N approximating models {i : 1, . . . , N} that are not necessarily nested.

Each model uses a particular set of auxiliary regressors z
(i)
t (qi × 1) (i.e., selects qi regressors from

the available set of auxiliary regressors) but all use the same core regressors xt. Let Πi be a qi × q
selection matrix that selects the included (potentially relevant) predictors used in the ith model by the

2D'Agostino et al. (2012) use bootstrap approach to test equal forecast ability in an unbalanced panel of experts,
without requiring imputation of missing observations.
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forecaster. For example suppose that q = 5 and the ith model includes the following three auxiliary

regressors: z1t, z3t and z4t. Then, we have qi = 3,

Πi =

 1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 such that Π′iΠi =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 .

The ith model includes all core regressors xt and a subset of auxiliary regressors z
(i)
t = Πizt. The

goal is to provide a h-step-ahead forecast of yT+h or its conditional mean yT+h|T = E (yT+h|hT ,hT−1, . . . ) =

x′Tβ + z′Tγ = h′T θ, based on the core regressors xt, the selected subset of auxiliary regressors z
(i)
t and

using the available data {
(
yt,xt, z

(i)
t

)
: 1, . . . , T} at time T . The i'th approximating model is

yt+h = x′tβ + z
(i)′
t γi + e

(i)
t+h ≡ h

(i)′
t θi + e

(i)
t+h, for i = 1, . . . , N, t = 1, . . . , T − h (3)

where h
(i)
t =

(
x′t, z

(i)′
t

)′
is the selected regressors of dimension ((p+ qi)× 1), θi = (β′, γ′i)

′ is an

((p+ qi)× 1) vector of coe�cients and e
(i)
t+h is the approximating error in the i'th model. Thus, the

i'th model uses p+ qi regressors. In matrix notation, (1) can be written as follows

y = Xβ + Zγ + e ≡ Hθ + e, (4)

where y = (y1+h, . . . , yT )′ , X =
(
x′1, . . . ,x

′
T−h

)′
, Z =

(
z′1, . . . ,x

′
T−h

)′
, e = (e1+h, . . . , eT )′ , and

H = (X,Z) . Similarly, we write (3) in matrix notation as

y = Xβ + Ziγi + e(i) ≡ Hiθi + e(i), (5)

where Zi= ZΠ′i =
(
z
(i)′
1 , . . . , z

(i)′
T−h

)′
, Hi= (X,Zi) and e(i)=

(
e
(i)
1+h, . . . , e

(i)
T

)′
.

Given (4) and (5), we can write

e(i) = Hθ −Hiθi + e = Z
(
Iq −Π′iΠi

)
γ + e. (6)

Following Hansen (2014), we can see equation (5) as having omitted variables. Let I denote an identity

matrix and 0 a zero matrix. We also let

Si =

(
Ip 0p×qi

0q×p Π′i

)
be a selection matrix of dimension (p+ q) × (p+ qi). We can also write θi = S′iθ, and similarly

Hi = HSi. In the full model where all auxiliary regressors are included in the model (i.e., qi = q), we

have Π′i = Iq, and the ordinary least-square (OLS) estimator of θ is

θ̂ =
(
H′H

)−1
H′y =

(
β̂′,γ̂′

)′
. (7)

The OLS estimator in the ith submodel is

θ̂i =
(
H′iHi

)−1
H′iy, (8)
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whereas in the narrowest model (i.e., the smallest model among all possible submodels used by fore-

casters), Π′i = 0q, and the OLS estimator is given by

θ̂i =
(
X′X

)−1
X′y. (9)

The h-step-ahead point forecast of yT+h from the ith approximating model is given by

ŷ
(i)
T+h|T = h

(i)′
T θ̂i = h′TSiθ̂i. (10)

We form with these individual forecasts ŷ
(i)
T+h|T , i = 1, . . . , N the N × 1-dimensional vector ŷT+h|T =(

ŷ
(1)
T+h|T , . . . , ŷ

(N)
T+h|T

)′
. We want to linearly combine these N forecasts using weights ωi, i = 1, . . . , N,

such that ω = (ω1, . . . , ωN )′ is a weight vector in the unit simplex in RN ,

W = {ω ∈ [0, 1]N :
N∑
i=1

ωi = 1}. (11)

Model selection is the process of identifying which submodel is the best approximating model where

the practitioner applies weight 1 to a particular single model (ωi = 1) and weight 0 to all other

models. When many competing models are available for estimation, and without enough guidance from

theory, model averaging may represent a feasible alternative to model selection. Forecast combination

generalizes forecasting method when many competing forecasts are available from alternative models.

2.1 Combination of forecasts

De�ne the average forecast estimator of yT+h|T as

ŷT+h|T (ω) = ω′ŷT+h|T =
N∑
i=1

ωiŷ
(i)
T+h|T =

N∑
i=1

ωih
′
TSiθ̂i = h′T θ̂ (ω) , (12)

where

θ̂ (ω) =

N∑
i=1

ωiSiθ̂i. (13)

It follows that in approximating linear models, the combined forecast is the same as the forecast based

on the weighted average of the parameter estimates across di�erent models.

Some practitioners, who adopt the combination of forecasts approach, may choose optimally the

weight ω by using a statistical procedure having known properties. For instance, one may select the

forecast weights to minimize the asymptotic risk over the set of all possible forecast combinations.

Alternatively, among many other choices, the mean square forecast error (MSFE) or the Mallows

Model Averaging as in Hansen (2007, 2008) can be used to choose ω, resulting to a data-dependent

weight, which may be random, cf. Elliott and Timmermann (2016, ch.14). In Section 2.2.2, we discuss

the impact of using data-dependent weights on the variance of the averaging estimators θ̂ (ω) and

ŷT+h|T (ω) .

One of our goals in this paper is to measure the uncertainty of the average forecast estimator
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de�ned in (12), for a given weight ω, whether optimal or not. In particular, we propose a bootstrap

based-approach to compute the variance of the average forecast estimator ŷT+h|T (ω) .

2.2 Assumptions and asymptotic results

We need to put some structure on the problem. Following Hjort and Claeskens (2003), Elliott et

al. (2013), Hansen (2014), and the more recent work of Liu (2015), we examine the asymptotic

distribution of θ̂ (ω) and ŷT+h|T (ω) in a local asymptotic framework, where the parameters γ are in a

root-T neighborhood of 0. More speci�cally, we make the following assumption.

Assumption 1. γ = γT = δ/
√
T , where δ is an unknown constant.

Throughout, for a matrix A, A > 0 denotes A is positive de�nite. ‖A‖ = (trace (A′A))1/2 denotes

the Euclidean norm. C represents a generic �nite constant. We also impose the following assumption:

Assumption 2. (a) {(h′t, et+h)} is a strictly stationary and ergodic time series with �nite r > 4

moments and E (et+h|Ft) = 0, where Ft = σ (ht,ht−1, . . . ; et, et−1, . . .) .

(b) Q = lim
T→∞

E
(
T−1H′H

)
> 0 or equivalently Q = lim

T→∞
E
(
T−1

∑T−h
t=1 (hth

′
t)
)
> 0.

(c) lim
T→∞

V ar
(
T−1/2H′e

)
> 0 and Ω = lim

T→∞
1
T

∑T−h
s=1

∑T−h
t=1 E (hsh

′
tes+het+h) > 0.

Assumption 1 ensures that the AMSE of the averaging estimators θ̂ (ω) and ŷT+h|T (ω) remain

�nite. The O
(

1/
√
T
)
ensures that both squared model biases and estimator variances have the same

order O (1/T ) . The least squares estimator (given by (9)) for the submodel has omitted variable bias.

As we will see below (see equation (14)), by Assumption 1,
√
T
(
Siθ̂i − θ

)
does not diverge despite

the presence of the asymptotic bias.

Assumption 2 imposes moment conditions on {et+h}, {ht} and the score vector {htet+h}, and
assume that data are strictly stationary. Assumption 2(a) is identical to Assumption 3.2' of Liu and

Kuo (2016 cf. footnote 14). The latter is a modi�cation of Assumption 3.2 of Liu and Kuo (2016)

for h-step-ahead forecasting model. Assumption 2 is similar to Assumption R of Cheng and Hansen

(2014), see also Assumption 5 of Djogbenou et al. (2015), and Assumption 5 of Gonçalves and Perron

(2014). Assumption 2(a) implies that et+h is conditionally unpredictable at time t. As discussed by

Cheng and Hansen (2014), when h > 1, it implies that et+h can be serially correlated. This is in line

with the fact that for h-step-ahead forecasting model, the error et+h typically follows a moving average

process of order h−1 (see e.g., Brown and Maital (1981) and Diebold, 2007, pp. 256-257). Assumption

2 is su�cient to imply that T−1H′H
p→ Q and T−1/2H′e

d→ R ∼ N(0(p+q)×1,Ω).

Before stating the next results, it is convenient to introduce some more notations, which also will

be needed later. We de�ne

Pi = p lim
T→∞

Pi,T where Pi,T = Si

(
1

T
S′iH

′HSi

)−1
S′i, and S0 =

(
0p×q
Iq

)
.
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Following the proof of Theorem 1 of Liu and Kuo (2016 cf. (A.1)), under Assumptions 1 and 2, as

T →∞,
√
T
(
Siθ̂i − θ

)
d→ Aiδ + N(0(p+q)×1,Vii) = Aiδ + PiR ≡ Λi, (14)

where Ai= (PiQ− Ip+q) S0, and Vij ≡ Cov (Λi,Λj) = PiΩP′j .

2.2.1 Distribution of averaging estimators with �xed weights

In this section we discuss the asymptotic distribution of averaging estimator with �xed weights. Given

(13) and (14), it follows that under Assumptions 1 and 2, as T →∞,

√
T
(
θ̂ (ω)− θ

)
d→ A (w) δ + N(0(p+q)×1,V (w)) =

N∑
i=1

ωiΛi ≡ Λ, (15)

where

A (w) ≡
N∑
i=1

ωiAi,

and

V (w) ≡ V(1) (w) + V(2) (w) =

N∑
i=1

ω2
iVii +

∑
i 6=j

ωiωjVij . (16)

In (14), Aiδ is the asymptotic bias that arises in estimating θ in model i, whereas when we use

the weighted average of the parameter estimates across the di�erent models θ̂ (ω) to estimate θ, the

asymptotic bias becomes A (w) δ, as given in (15). The asymptotic bias Aiδ is nonzero for all possible

models except the full model where all auxiliary regressors are included and such that qi = q, Π′i = Iq,

Si = Ip+q implying that Pi = Q−1.

Given (15), it follows that the AMSE of the averaging estimator θ̂ (ω) (based on �xed weights) is

AMSE
(
θ̂ (ω)

)
= A (w) δδ′A′ (w) + V (w) , (17)

which is a function of the local parameter δ. As is well known, in the local asymptotic framework (see

e.g., Liu (2015)), the local parameter δ cannot be consistently estimated. this implies that we cannot

provide a consistent estimator of AMSE
(
θ̂ (ω)

)
. In particular, the bootstrap estimate of AMSE

(
θ̂ (ω)

)
will be inconsistent.

Similarly, given (12) and (15), it follows that the asymptotic bias and variance of the combined

forecast ŷT+h|T (ω) are h′TA (w) δ and ΣyT+h|T ≡ h′TV (w) hT , respectively, implying that

AMSE
(
ŷT+h|T (ω)

)
= h′TA (w) δδ′A′ (w) hT + h′TV (w) hT = h′TAMSE

(
θ̂ (ω)

)
hT , (18)

. Thus, the AMSE of the average forecast ŷT+h|T (ω) is also function of the local parameter δ and

cannot be consistently estimated. For this reason, we focus on the estimation of the part of the AMSE

of the averaging estimators θ̂ (ω) and ŷT+h|T (ω) which are consistently estimable, i.e., the asymptotic

variances V (w) and ΣyT+h|T , respectively.
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Note that the decomposition of the variance given in (16) has two components: the �rst component

V(1) (w) is a weighted average of the variances of the estimated parameter from each model and the

second component V(2) (w) is a weighted average of their covariances. As is evident in (6) the error e(i)

from each model has a common component e, which drives the non-zero covariances across models. Our

aim in this paper is to use bootstrap approach to consistently estimate the asymptotic variance V (w)

and/or ΣyT+h|T . As we show later, any valid bootstrap should mimic both components of V (w) , as

well as the behavior of the regression residuals from the full model. We accomplish this in Section 3.2.

2.2.2 Distribution of averaging estimators with data-dependent weights

The models chosen for the forecast combination often result in practice from model selection tests.

Hence, in this section, we follow Claeskens and Hjort (2003) and Liu (2015) and study the asymptotic

distributions of averaging estimators with data-dependent weights. Speci�cally, as in Claeskens and

Hjort (2003) we assume that the weight is a smooth function of the asymptotic distribution of δ̂, where

δ̂ =
√
T γ̂, such that γ̂ is given in (7) and is the estimate from the full model. Before stating the

asymptotic distribution of the averaging estimators, it is useful to state the distribution of δ̂. Given

(14), under Assumptions 1 and 2, as T →∞, in the full model we have,

√
T
(
θ̂ − θ

)
d→ N(0(p+q)×1,Q

−1ΩQ−1) = Q−1R, (19)

implying that

δ̂ =
√
T γ̂

d→ Rδ = δ + S′0Q−1R. (20)

Next, let ω
(
i|δ̂
)
denote a data-dependent weight function for the ith model. As for the �xed

weight case, we assume that for i = 1, . . . , N, the weights ω
(
i|δ̂
)
take the values in the interval [0, 1]

and the sum of the weights is required to be one. Given (14), and following the proof of Theorem 6 of

Liu (2015), if ω
(
i|δ̂
)

d→ ω (i|Rδ) and Assumptions 1 and 2 hold, as T →∞,

√
T
(
θ̂ (ω)− θ

)
=

N∑
i=1

ω
(
i|δ̂
)√

T
(
Siθ̂i − θ

)
d→

N∑
i=1

ω (i|Rδ) (Aiδ + PiR) ≡ R1 + R2. (21)

Hence, the asymptotic variance of the averaging estimator θ̂ (ω) (based on data-dependent weights) is

V ar (R1 + R2) = V ar (R1) + V ar (R2) + 2Cov (R1,R2) ,
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which is function of the local parameter δ, where

V ar (R1) =

N∑
i=1

V ar [ω (i|Rδ)] Aiδδ
′A′i +

∑
i 6=j

Cov (ω (i|Rδ) , ω (j|Rδ)) Aiδδ
′A′j ,

V ar (R2) =
N∑
i=1

V ar [ω (i|Rδ) PiR] +
∑
i 6=j

Cov (ω (i|Rδ) PiR, ω (j|Rδ) PjR) and

Cov (R1,R2) =
N∑
i=1

N∑
j=1

Cov [ω (i|Rδ) Aiδ,ω (j|Rδ) PjR] .

To gain further insight, let us consider a simple example where there is no core regressor xt and

zt = 1. Thus, we have N = 2 approximating models: the narrow model with no predictor (Πi =

0) and the full model having only a constant term. The OLS estimators in the narrow and full

models are 0 and yT+h = (T − h)−1
∑T−h

t=1 yt+h, respectively. Consequently, the averaging estimator

θ̂ (ω) = ω
(
i|δ̂
)
yT+h, where we use the weights 1−ω

(
i|δ̂
)
and ω

(
i|δ̂
)
for the narrow and full models,

respectively. It follows that

√
T
(
θ̂ (ω)− θ

)
= ω

(
i|δ̂
)√

TyT+h − δ
d→ ω (i|Rδ) Rδ − δ,

such that

Rδ = δ + R, R ∼ N(0, σ2∞) with σ2∞ = lim
T→∞

1

T

T−h∑
s=1

T−h∑
t=1

E (es+het+h) . (22)

Therefore, the asymptotic variance of the averaging estimator θ̂ (ω) (based on data-dependent weights)

is

V ar (ω (i|Rδ) Rδ − δ) = V ar (ω (i|Rδ) Rδ)

= V ar (ω (i|Rδ))V ar (Rδ) + V ar (ω (i|Rδ))E (Rδ)
2 + V ar (Rδ)E (ω (i|Rδ))

2 ,

where the second equality uses the formula of variance of product of two random variables, and

for simplicity, we assume that Cov (ω (i|Rδ) ,Rδ) = Cov
(
ω2 (i|Rδ) ,R

2
δ

)
= 0. Given (22), we have

V ar (Rδ) = σ2∞ and E (Rδ) = δ. Therefore, even in the (very simple) case where we impose that the

mean and variance of the data-dependent weight ω (i|Rδ) are not function of δ, the asymptotic variance

of the averaging estimator θ̂ (ω) and ŷT+h|T (ω) will be function of the local parameter δ.

We emphasize that in contrast to the �xed weights case, the asymptotic variance of averaging

estimators based on data-dependent weights is function of the local parameter δ. Under the local-to-

zero assumption, the local parameter δ cannot be consistently estimated. thus we cannot provide a

consistent estimator of the asymptotic variance of θ̂ (ω) and ŷT+h|T (ω) when the weights are data-

dependent. In particular, when the weights are data-dependent, in the local asymptotic framework, we

cannot rely on bootstrapping to provide a consistent estimate of the asymptotic variances of weighted

average estimators such as θ̂ (ω) and ŷT+h|T (ω). This negative result is related to the �nding in

Hjort and Claeskens (2003) (cf. Section 10.6) regarding the invalidity of bootstrapping method on the

9



weighted average of γ̂i using data-dependent weights. In a drifting asymptotic framework using data-

dependent weights (and likelihood-based model), Hjort and Claeskens (2003) argued that bootstrapping

does not work because the asymptotic distribution of weighted average estimator is a function of the

local parameter δ, and unfortunately, the estimator δ̂ =
√
T γ̂ does not go to δ in probability.

Given the impossibility to consistently estimate the asymptotic variances of θ̂ (ω) and ŷT+h|T (ω)

based on data-dependent weights, in the local asymptotic framework, we are interested in establishing

valid bootstrap methods to compute the variances of θ̂ (ω) and the average forecast estimator ŷT+h|T (ω)

based on �xed (non-estimated) weights.

Notice that combination of forecasts based on �xed weights encompasses the equal-weighted (ωi =

1/N , i = 1, . . . , N,) forecast combinations. Empirical studies often �nd a surprising result that simple

equal-weighted forecast combinations perform very well compared with more sophisticated schemes that

rely on estimated combination weights. Stock and Watson (1999) �rst reported this �nding and called it

"forecast combination" puzzle. Theoretical research during last 20 years has identi�ed several reasons:

(i) The gains from data-based combination weights critically depend to the heteroskedasticity and

negative correlations in forecast errors between models; (ii) often bad models get weeded out, resulting

in similar error variances and positive error covariances; (iii) errors introduced by the estimation of

weights could overwhelm any gain from using optimal weights, and (iv) weights seldom stay the same

and estimation of varying weights over the sample introduces more sampling variability. See e.g., Smith

and Wallis (2009), Elliott and Timmermann (2016), Genre et al. (2013), and Lahiri et al. (2017).

3 Residual-based bootstrap inference

The goal of this section is to introduce and discuss bootstrap schemes that resample residuals in the

model averaging context. Our proposed bootstrap methods resample the regression residuals 3

{
ê
(i)
t+h

}
over time t = 1, . . . , T − h for each model i = 1, . . . , N . More speci�cally, we consider a �xed-design

residual-based bootstrap procedure which takes the regressors in the sample as �xed, and apply an

appropriate resampling method to the estimated residuals. The �xed-design (wild bootstrap) was

originally suggested by Kreiss (1997), Hansen (2000) used a �xed-regressor bootstrap approach in the

context of testing for structural change in regression models, whereas Gonçalves and Kilian (2004,

2007) studied �xed-design wild bootstrap for dynamic models (without model averaging). As usual,

we will denote with asterisks quantities in the bootstrap world.

The regression residuals are

ê
(i)
t+h = yt+h − h

(i)′
t θ̂i for i = 1, . . . , N, t = 1, . . . , T − h. (23)

3See also the recent work of Gonçalves and Perron (2014) and Djogbenou et al. (2015), who consider residuals-
based bootstrap inference in factor-augmented regression context without model averaging; and the residual-based block
bootstrap approach studied by Paparoditis and Politis (2003) and Carsten et al. (2015), in the context of unit root
testing and multivariate cointegrated processes, respectively.
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Let
{
e
∗(i)
t+h, t = 1, . . . , T − h

}
denote a bootstrap sample from

{
ê
(i)
t+h, t = 1, . . . , T − h

}
. We con-

sider the following bootstrap DGP

y
∗(i)
t+h = x′tβ̂ + z

(i)′
t γ̂i + e

∗(i)
t+h ≡ h

(i)′
t θ̂i + e

∗(i)
t+h, for i = 1, . . . , N, t = 1, . . . , T − h. (24)

We can equivalently write (24) as

y∗(i) = Hiθ̂i + e∗(i), (25)

where y∗(i)=
(
y
∗(i)
1+h, . . . , y

∗(i)
T

)′
and e∗(i)=

(
e
∗(i)
1+h, . . . , e

∗(i)
T

)′
. Next we re�t the model using the �ctitious

response variables, and retain the bootstrap regression parameter estimator θ̂∗i analog of θ̂i. In other

words, based on the bootstrap dataset
{(
y
∗(i)
t+h,h

(i)′
t

)
, t = 1, . . . , T − h

}
we compute θ̂∗i . In particular,

the bootstrap OLS estimator analog of θ̂i in the ith submodel is

θ̂∗i =
(
H′iHi

)−1
H′iy

∗(i). (26)

In the full model where all auxiliary regressors are included, the bootstrap OLS estimator analog of θ̂

is

θ̂∗ =
(
H′H

)−1
H′y∗, with y∗ = Hθ̂ + e∗. (27)

Note that because the residual-based bootstrap scheme used to generate y∗(i) is a �xed-design, we keep

the regressors Hi �xed in the bootstrap regressions. Next, we can similarly compute the bootstrap

analog of ŷ
(i)
T+h|T given by (10) (i.e., the least-squares forecast of yT+h|T in model i) as follows

ŷ
∗(i)
T+h|T = h

(i)′
T θ̂∗i . (28)

Hence, the bootstrap average forecast estimator ŷ∗T+h|T (ω) analog of ŷT+h|T (ω) is

ŷ∗T+h|T (ω) =
N∑
i=1

ωiŷ
∗(i)
T+h|T =

N∑
i=1

ωih
′
TSiθ̂

∗
i = h′T θ̂

∗ (ω) , (29)

where

θ̂∗ (ω) =

N∑
i=1

ωiSiθ̂
∗
i . (30)

In the following, we let

âT (w) ≡
N∑
i=1

ωiâi,T ,

such that

âi,T ≡
√
T

[
1

T
Pi,TH′ −

(
H′H

)−1
H′
]

y.

11



It is useful to rewrite
√
T
(
θ̂∗ (ω)− θ̂

)
as:

√
T
(
θ̂∗ (ω)− θ̂

)
=

N∑
i=1

ωiâi,T︸ ︷︷ ︸
=âT (w)

+
N∑
i=1

ωiPi,T

(
1√
T

H′e∗(i)
)

(31)

(for further details, see equation (A.3) in the appendix).

In the following and throughout this paper, P ∗ (E∗ and V ar∗) denotes the probability measure (ex-

pected value and variance) induced by the bootstrap resampling, conditional on a realization of the orig-

inal time series. In addition, for a sequence of bootstrap statistics Z∗T , we write Z
∗
T = oP ∗ (1) in proba-

bility, or Z∗T →P ∗ 0, as n→∞, in probability, if for any ε > 0, ι > 0, limT→∞ P [P ∗ (|Z∗T | > ι) > ε] = 0.

Similarly, we write Z∗T = OP ∗ (1) as T →∞, in probability if for all ε > 0 there exists a Mε <∞ such

that limT→∞ P [P ∗ (|Z∗T | > Mε) > ε] = 0. Finally, we write Z∗T →d∗ Z as T → ∞, in probability, if

conditional on the sample, Z∗T weakly converges to Z under P ∗, for all samples contained in a set with

probability P converging to one.

Next, we let

V∗ (w) = p lim
T→∞

V∗T (w) where V∗T (w) ≡ V ar∗
[√

T
(
θ̂∗ (ω)− θ̂

)]
,

and

V∗ij,T ≡ Cov∗
[
Pi,T

(
1√
T

H′e∗(i)
)
,Pj,T

(
1√
T

H′e∗(j)
)]

. (32)

Given (31) and (32), it follows that the bootstrap variance V∗T (w) can be written as

V∗T (w) = V
∗(1)
T (w) + V

∗(2)
T (w) ≡

N∑
i=1

ω2
iV
∗
ii,T +

∑
i 6=j

ωiωjV
∗
ij,T . (33)

3.1 Failure of bootstrap methods that resample naïvely the whole vector of resid-

uals over t

Let êt=
(
ê
(1)
t , . . . , ê

(N)
t

)′
denote an (N × 1)-vector of residuals at time t from (all) models i = 1, . . . , N.

As it is evident, we stack all residuals at time t into êt. Our goal in this section is to show that a

naïve application of the (�xed-design) residual-based bootstrap, which resamples the whole vector of

regression residuals êt over t, fails to work in the context of model averaging. In particular, one cannot

use a naïve bootstrap methods that resample êt to compute a consistent estimator of V (w) (i.e., the

asymptotic variance covariance matrix of the weighted estimator θ̂ (ω) given by (13)).

In this section, for simplicity we assume that h = 1. We discuss the invalidity of two standard

bootstrap methods applied on the regression residuals: the nonparametric i.i.d. bootstrap and the

wild bootstrap (WB). The nonparametric i.i.d. bootstrap was �rst proposed by Efron (1979). The

WB was originally developed by Wu (1986), Liu (1988) and Mammen (1993) in the context of static

linear regression models with (unconditionally) heteroskedastic errors. Gonçalves and Kilian (2004)

12



studied �xed-design and recursive-design WB for dynamic models, whereas Gonçalves and Kilian

(2004) consider �xed-design WB for AR(∞) processes. Note that when h = 1, under Assumption 2,

et+h becomes a martingale di�erence sequence (m.d.s.), and, as a result, WB is an appropriate method

to use.

It is well-known in the bootstrap literature that when dealing with a vector of correlated residuals

for a given time period one should not treat these residuals as mutually independent when resampling,

see e.g., Kilian and Lütkepohl (2017 cf. Ch 12) in the context of VAR models, among others. Sim-

ilarly, in the context of panel data models with presence of cross-sectional dependence, in order to

preserved cross-sectional dependence when resampling, Maddala and Wu (1999), Kapetanios (2008),

and Gonçalves (2011) to name few, suggested to resample cross-sectional units as wholes rather than

resampling within the units. See also the related works by Mark (1995), Rapach and Zhou (2013),

Gospodinov and Ng (2013), Brüggemann, Jentsch and Trenkler (2016) and Montiel Olea and Plagborg-

Moller (2020).

In our context, a naïve but "natural" way to preserve the contemporaneous correlation across

model residuals is to stack all residuals at time t into a vector and resample over t, i.e., resample

the whole vector êt. As we will see below, this approach which is valid in other contexts, fails to

work in the context of model averaging. The bootstrap sample from {êt+h, t = 1, . . . , T − h} is{
e∗t+h, t = 1, . . . , T − h

}
where e∗t+h=

(
e
∗(1)
t+h , . . . , e

∗(N)
t+h

)′
. For the WB, we let

e∗t+h = êt+hυ
∗
t+h, t = 1, . . . , T − h, (34)

where υ∗t+h ∼i.i.d.(0, 1) across t and such that E∗
∣∣υ∗t+h∣∣2+ε <∞, for some ε > 0.

The naïve application of Efron's i.i.d. bootstrap method applied on the vector êt+h of regression

residuals generates at time t+ h the bootstrap residuals as:

e∗t+h i.i.d. ∼
{
êt+h − ¯̂eT−h, t = 1, . . . , T − h

}
, (35)

where ¯̂eT−h = (T − h)−1
∑T−h

t=1 êt+h. Note that resampling on the recentered residuals ensures that

E∗
(
e∗t+h

)
= 0N×1.

In the following, we let

b̂
(i)
t = ê

(i)
t − êt, (36)

where ê
(i)
t = yt − h

(i)′
t θ̂i and êt = yt − h′tθ̂. We can rewrite b̂

(i)
t as follows:

b̂
(i)
t = h′t

[
Ip+q −Pi,T

(
1

T
H′H

)]
θ + h′t

[(
1

T
H′H

)−1
−Pi,T

](
1

T
H′e

)
≡ b̂(i)t,1 + b̂

(i)
t,2. (37)

Notice that in the full model, we have b̂
(i)
t = 0. To present our results of invalidity of the WB and the

nonparametric i.i.d. bootstrap applied to the whole vector êt, as given in (34) and (35), respectively,

13



it is helpful to observe that we can also rewrite V∗ij,T as follows

V∗ij,T = Pi,T

[
T−1

T−h∑
t=1

T−h∑
s=1

hsh
′
tCov

∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)]
P′j,T , (38)

(for further details, see equation (A.5) in the appendix). Next, note that for both methods: WB and

i.i.d. WB, if s 6= t, we have Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= 0 (since e

∗(i)
t+h is independent across t conditionally on

the observed time series), whereas if s = t, we have

Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
=


(
êt + b̂

(i)
t

)
︸ ︷︷ ︸

=ê
(i)
t

(
êt + b̂

(j)
t

)
︸ ︷︷ ︸

=ê
(j)
t

if e∗t+h is obtained by (34)

cij,T , if e∗t+h is obtained by (35)

(39)

such that

cij,T = (T − h)−1
T−h∑
t=1

(
êt + b̂

(i)
t

)(
êt + b̂

(j)
t

)
−

(
(T − h)−1

T−h∑
t=1

(
êt + b̂

(i)
t

))(
(T − h)−1

T−h∑
t=1

(
êt + b̂

(j)
t

))
.

Denote

cij,1,T = (T − h)−1
T−h∑
t=1

ê2t

cij,2,T = (T − h)−1
T−h∑
t=1

b̂
(i)
t,1b̂

(j)
t,1

cij,3,T =

(
(T − h)−1

T−h∑
t=1

b̂
(i)
t,1

)(
(T − h)−1

T−h∑
t=1

b̂
(j)
t,1

)
,

and

cij,1 = lim
T→∞

[
(T − h)−1

T−h∑
t=1

E
(
ê2t
)]

cij,2 = lim
T→∞

[
(T − h)−1

T−h∑
t=1

E
(
b̂
(i)
t,1b̂

(j)
t,1

)]

cij,3 = lim
T→∞

[
(T − h)−1

T−h∑
t=1

E
(
b̂
(i)
t,1

)][
(T − h)−1

T−h∑
t=1

E
(
b̂
(j)
t,1

)]
.

Theorem 3.1. Suppose that Assumptions 1 and 2 hold.
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(a) If e∗t+h is obtained by (34), then we have

V∗ij,T = Pi,T

T−1
T−h∑
t=1

hth
′
t

(
êt + b̂

(i)
t

)
︸ ︷︷ ︸

=ê
(i)
t

(
êt + b̂

(j)
t

)
︸ ︷︷ ︸

=ê
(j)
t

P′j,T

= Pi,T

[
T−1

T−h∑
t=1

hth
′
tê

2
t

]
P′j,T︸ ︷︷ ︸

→PPiΩP′j=Vij

+ ṼWB

ij,T + op (1) ,

where

ṼWB

ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t,1b̂

(j)
t,1

]
P′j,T .

If in addition p lim
T→∞

ṼWB

ij,T = ṼWB
ij , then

V∗T (w)→P V (w) + ṼWB (w) ,

as T →∞, where

ṼWB (w) ≡
N∑
i=1

N∑
j=1

ωiωjṼ
WB

ij , (40)

with

ṼWB

ij = Pi lim
T→∞

[
T−1

T−h∑
t=1

E

[
hth

′
t

[
θ′
(

Ip+q −
(

1

T
H′H

)
P′i,T

)
hth

′
t

(
Ip+q −Pj,T

(
1

T
H′H

))
θ

]]]
P′j .

(b) If e∗t+h is obtained by (35), then we have

V∗ij,T = cij,TPi,T

[
T−1

T−h∑
t=1

hth
′
t

]
P′j,T

= cij,1,TPi,T

[
T−1

T−h∑
t=1

hth
′
t

]
P′j,T︸ ︷︷ ︸

→P cij,1PiQP′j

+ Ṽi.i.d.B

ij,T + op (1) ,

where

Ṽi.i.d.B

ij,T = (cij,2,T + cij,3,T ) Pi,T

[
T−1

T−h∑
t=1

hth
′
t

]
P′j,T .

If in addition p lim
T→∞

Ṽi.i.d.B

ij,T = Ṽi.i.d.B
ij , then

V∗T (w)→P
N∑
i=1

N∑
j=1

ωiωjcij,1PiQP′j + Ṽi.i.d.B (w) ,
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as T →∞, where

Ṽi.i.d.B (w) ≡
N∑
i=1

N∑
j=1

ωiωjṼ
i.i.d.B

ij , (41)

with

Ṽi.i.d.B

ij = (cij,2 + cij,3) PiQP′j .

According to Theorem 3.1, one cannot use the naïve residual-based bootstrap method to approx-

imate the asymptotic covariance matrix of a combined estimators, more speci�cally, p lim
T→∞

V∗T (w) 6=

V (w). The validity of any bootstrap method in the context of model averaging depends crucially on

the ability of the bootstrap to allow consistent estimation of the asymptotic covariance matrix V (w) .

Bootstrap methods which resample naïvely the whole vector of regression residuals êt over t, fails to

do so by not correctly mimicking the behavior of the regression residuals from the full model.

Remark 1. The problem is not that the naïve residual-based bootstrap does not capture cross-sectional

dependence of ê
(i)
t+h over i. Rather the main problem is that it induces an additional term in the

bootstrap variance (i.e., ṼWB
ij and Ṽi.i.d.B

ij for the WB and the i.i.d. bootstrap, respectively), which

should not be there. This additional term in the bootstrap variance is present, even in the simple

context without model averaging, where we consider only one approximating model (N = 1), which is

not the full model. Notice that in this latter simple case, the vector êt+h boils down to ê
(i)
t+h, which

contains regression residuals from the full model êt+h but also the term b̂
(i)
t+h 6= 0 (see (36)). Although

Theorem 3.1 considers two special cases: the WB and the i.i.d. bootstrap method that resample as in

(34) and (35), respectively, the result extends to any bootstrap method that resamples the vector êt over

t.

As it is evident from Theorem 3.1, the term b̂
(i)
t+h (more precisely its component b̂

(i)
t+h,1 (de�ned in

(37))) drives the asymptotic behavior of the non-desirable additional term in the bootstrap variance.

Furthermore, notice that if the regression residuals were resampled from the full model, then b̂
(i)
t+h

would be identically zero, and consequently there will be no additional term in the bootstrap variance,

i.e., ṼWB
ij = 0 and Ṽi.i.d.B

ij = 0 for the WB and the i.i.d. bootstrap, respectively. Finally, note that

for the i.i.d. bootstrap even if the regression residuals were resampled from the full model, such that

we result with Ṽi.i.d.B
ij = 0, the asymptotic limit of the bootstrap variance estimator V∗T (w) would be∑N

i=1

∑N
j=1 ωiωjcij,1PiQP′j , the latter is equal to the asymptotic variance V (w) only when the error

term is assume to be i.i.d. and homoscedastic.

Given the failure of the naïve residual-based bootstrap, which resamples the entire (N × 1)-vector

of regression residuals êt over t, we are interested in establishing valid bootstrap methods in this

environment of combination of estimators.
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3.2 General residual-based bootstrap approach for model averaging

For the bootstrap method to be valid in our framework, it should reproduce the three main character-

istics of our model averaging simultaneously : (1) the possible serial correlation (dependence) in the

error term e
(i)
t+h over t (in particular, when h > 1), (2) the cross-sectional dependence of e

(i)
t+h over i

and (3) the behavior of the regression residuals from the full model. In general, when the forecasting

horizon h is such that h > 1, the residuals e
(i)
t+h will be correlated and may follow a moving average

process (see e.g., Brown and Maital (1981) and Diebold, 2007, pp. 256-257).

When the forecasting horizon is larger than one, and the error term is correlated over t, it is well

known in the bootstrap literature that one can capture time series dependence nonparametrically by

applying blocking methods. For instance, the moving blocks bootstrap (MBB) of Künsch(1989) and Liu

and Singh (1992), the nonoverlapping block bootstrap (NBB) of Carlstein (1986), and the stationary

bootstrap (SB) of Politis and Romano (1994), among others, are suitable under these circumstances.

However, as discussed in Remark 1, a naïve application of any blocking bootstrap method which

resamples blocks of the vector of regression residuals êt over t will induce an additional term in the

bootstrap variance.

We propose two general residual-based bootstrap approach for model averaging, which can preserve

the cross-sectional dependence of e
(i)
t+h over i, capture time series dependence nonparametrically in the

error term, and at the same time mimick the behavior of the regression residuals from the full model

(avoiding the additional term in the bootstrap variance). They are: (i) blocking-based residual

resampling in model averaging, and (ii) dependent wild-based residual resampling in model averaging.

These two general residual-based bootstrap methods resample a recentered version of the regression

residuals
{
ê
(i)
t+h

}
.

3.2.1 Blocking-based residual resampling

The blocking-based residual resampling in model averaging applies blocking methods to the recentered

version of the regression residuals by using the same set of random draws chosen by the blocking

bootstrap method in all models i = 1, . . . , N. Resampling the recentered version of regression residuals{
ê
(i)
t+h

}
over i with the same set of random indices is important to preserve the cross-sectional depen-

dence of e
(i)
t+h over di�erent models i = 1, . . . , N. To avoid the unwarranted result obtained for the

naïve residual-based bootstrap in Theorem 3.1, we set the recentered regression residuals to be equal

to the regression residuals from the full model.

More formally, in the following let ` = `T ∈ N (1 ≤ ` < T − h) be a block length for a given block

bootstrap. For simplicity, we assume that (T − h) /`T = kT is an integer and denotes the number of

blocks of size `T one have to draw. Let {τt, t = 1, . . . , T − h} denote a sequence of random indices

chosen by the blocking bootstrap taking values on {1, . . . , T − h}. For instance for the MBB

{τt, t = 1, . . . , T − h} ≡ {I1 + 1, . . . , I1 + `, . . . , Ik + 1, . . . , Ik + `} , (42)
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where Ij , j = 1, . . . , k, are i.i.d. random variables distributed uniformly on {0, . . . , T − h− `} . Note
that ` = 1 corresponds to the standard i.i.d. bootstrap. Similarly, for the NBB

{τt, t = 1, . . . , T − h} = {J1`+ 1, . . . , J1`+ `, . . . , Jk`+ 1, . . . , Jk`+ `} , (43)

where Jj are i.i.d. random variables distributed uniformly on {0, . . . , k − 1} .
Below, B is the number of bootstrap replications (e.g., B = 999). The steps for obtaining an

estimator of the variance of a weighted average of parameter estimates across di�erent models and/or

an estimator of the variance of a combined forecast are as follows.

Algorithm 1. The general blocking-based residual resampling in model averaging.

1. For each model, i = 1, . . . , N, �t the model and retain the �tted values and the residuals, as in

(23).

2. Choose a blocking based bootstrap method (for instance MBB, NBB or SB) and a block length

`. Then, apply the blocking method and obtain the sequence of random indices {τt, t = 1, . . . , T − h} .
For i = 1 (i.e., for the model used by forecaster number 1) the bootstrap residual samples is given

by e
∗(1)
t+h = ê

(1)
τt+h
− b̂(1)τt+h − E

∗
(
ê
(1)
τt+h
− b̂(1)τt+h

)
+ b̂

(1)
(j−1)`+s+h, t = 1, . . . , T − h. Store the set of index

{τt, t = 1, . . . , T − h} . Next, for all the remaining models i = 2, . . . , N, use the same set of index

{τt, t = 1, . . . , T − h} drawn for model 1 to obtain their bootstrap residual samples. More speci�cally,

construct bootstrap residual samples as follows

ê
∗(i)
(j−1)`+s+h = ê

(i)
τ(j−1)`+s+h

− b̂(i)τ(j−1)`+s+h︸ ︷︷ ︸
=êτ(j−1)`+s+h

− E∗
(
ê
(i)
τ(j−1)`+s+h

− b̂(i)τ(j−1)`+s+h

)
+ b̂

(i)
(j−1)`+s+h, (44)

for j = 1, . . . , k, s = 1, . . . , `, i = 1, . . . , N, where E∗
(
ê
(i)
τ(j−1)`+s+h

− b̂(i)τ(j−1)`+s+h

)
is the bootstrap

expected value of the resampling version in the full model of the raw regression residuals
{
ê(j−1)`+s+h

}
.

For example with the MBB,

E∗
(
ê
(i)
τ(j−1)`+s+h

− b̂(i)τ(j−1)`+s+h

)
=

1

T − h− `+ 1

T−h−`+1∑
j=1

(
ê
(i)
j−1+s+h − b̂

(i)
j−1+s+h

)

=
1

T − h− `+ 1

T−h−`+1∑
j=1

êj−1+s+h,

whereas for the NBB,

E∗
(
ê
(i)
τ(j−1)`+s+h

− b̂(i)τ(j−1)`+s+h

)
=

1

k

k∑
j=1

(
ê
(i)
(j−1)`+s+h − b̂

(i)
(j−1)`+s+h

)
=

1

k

k∑
j=1

ê(j−1)`+s+h

for i = 1, . . . , N.

3. Formulate the bootstrap version of yt+h as in (24).

4. Compute θ̂∗i , ŷ
∗(i)
T+h|T , θ̂

∗ (ω) and ŷ∗T+h|T (ω) as given by (26) and (28), (30) (29), respectively.
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5. Repeat steps 2, 3 and 4 B times, resulting in statistics:{
θ̂∗1 (ω) , . . . , θ̂∗B (ω)

}
and/or

{
ŷ∗1T+h|T (ω) , . . . , ŷ∗BT+h|T (ω)

}
,

then store the values of θ̂∗b (ω) and ŷ∗bT+h|T (ω), b = 1, . . . , B.

6. As will be shown shortly, the bootstrap variance estimator V∗T (w) of the weighted average of

the parameter estimates across the di�erent models can be evaluated by simulation using

T
1

B

B∑
b=1

(
θ̂∗b (ω)− 1

B

B∑
b=1

θ̂∗b (ω)

)(
θ̂∗b (ω)− 1

B

B∑
b=1

θ̂∗b (ω)

)′
, (45)

where B =∞ in theory. In practice, B = 999 tends to provide a reasonable approximation.

Similarly, the bootstrap variance estimator of the average forecast can be evaluated by simulation

V ar∗
(√

T ŷ∗T+h|T (ω)
)

= T
1

B

B∑
b=1

(
ŷ∗bT+h|T (ω)− 1

B

B∑
b=1

ŷ∗bT+h|T (ω)

)2

. (46)

Alternatively one can also use

V ar∗
(√

T ŷ∗T+h|T (ω)
)

= h′TV ar
∗
(√

T θ̂∗ (ω)
)

hT , (47)

where V ar∗
(√

T θ̂∗ (ω)
)
is computed by using (45).

Note that the centering of the bootstrap sample in (44) ensures that in the full model E∗
(
e∗t+h

)
= 0

(whereas in the model i, we have E∗
(
e
∗(i)
t+h

)
= b̂

(i)
t+h). See Section 3.2.3 below, where we used the MBB

approach to implement blocking resampling method.4 In practice (as in our empirical application), to

compute the estimated residual from the full model êt+h, one may consider the model within which

all of the approximations models are nested. If such a model does not exist (i.e., is not one of the

approximation models i = 1, . . . , N), a comprehensive model can be easily created by including all

available regressors in it.

3.2.2 Dependent wild-based residual resampling

We now describe the second general bootstrap algorithm that can also be used to obtain an estimator of

the variance of a weighted average of a parameter estimates across di�erent models and/or an estimator

of the variance of a combined forecast. The generic algorithm for the dependent wild-based residual

resampling in model averaging reads as follows.

Algorithm 2. The general dependent wild-based residual resampling in model averaging.

1. Identical to Algorithm 1.

2. For i = 1, . . . , N construct bootstrap residual samples e
∗(i)
t+h , t = 1, . . . , T − h by multiplying

each recentered regression residuals (which is equal to the regression residuals from the full model) by

4As pointed out by one referee, an alternative to the blocking approach would be to �whiten� the serially correlated
residuals before applying the bootstrap, taking advantage of the fact that residuals have an MA(h− 1) structure when
forecasting at the h-step ahead horizon. We leave a rigorous proof for future research.
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a possibly dependent variable of external draws, and use the same variable for all i = 1, . . . , N . More

speci�cally, construct bootstrap residual samples as follows

e
∗(i)
t+h =

ê(i)t+h − b̂(i)t+h︸ ︷︷ ︸
=êt+h

 · η∗(i)t+h + b̂
(i)
t+h, t = 1, . . . , T − h, (48)

where η
∗(i)
t+h = η∗t+h (for all i = 1, . . . , N) is a typical element of a vector η∗ =

(
η∗1+h, . . . , η

∗
T

)′
of random

draws (possibly dependent across t) with mean 0(T−h)×1. Note that in (48), η∗ is the same across

i = 1, . . . , N .

The rest of the steps 3-6 of Algorithm 2 is same as those in Algorithm 1.

Note that imposing 0 mean to η∗t+h ensures that in the full model E∗
(
e
∗(i)
t+h

)
= b̂

(i)
t+h (as in Algorithm

1). By using the same value of random draws for all i = 1, . . . , N, we preserve the dependence across

models.

Remark 2. In Algorithms 1 and 2, the bootstrap residuals e∗(i) (in model i) and e∗ (in the full model)

satisfy the following equation

e∗(i) = b̂(i) + e∗, (49)

such that E∗ (e∗) = 0 and E∗
(
e∗(i)

)
= b̂(i) with b̂(i)=

(
b̂
(i)
1+h, . . . , b̂

(i)
T

)′
. Thus, our bootstrap approaches

mimic the non-zero mean property of the error e(i) in model i (see equation (6)). Both schemes (Al-

gorithms 1 and 2) also have the advantage that they retain the cross-sectional dependence of e
(i)
t+h

over di�erent models i = 1, . . . , N and at the same time preserves the time series dependence over

t = 1, . . . , T − h nonparametrically in the error term.

Remark 3. Given (38), note that the value of V∗ij,T remains unchanged if instead of using (44) in

step 2 of Algorithm 1, we construct bootstrap residual samples as follows

ê
∗(i)
(j−1)`+s+h = êτ(j−1)`+s+h, (50)

for j = 1, . . . , k, s = 1, . . . , `, i = 1, . . . , N. Similarly, V∗ij,T remains unchanged if instead of using

(48) in step 2 of Algorithm 2, we simply generate bootstrap residual samples as follows

e
∗(i)
t+h = êt+hη

∗
t+h, (51)

for t = 1, . . . , T − h, i = 1, . . . , N. Consequently, our bootstrap procedures yield exactly the same boot-

strap variance estimator of averaging estimators as the simple bootstrap scheme, which consist of resam-

pling the errors from the full model, i.e., obtained bootstrap residual sample
{
e
∗(i)
t+h, t = 1, . . . , T − h

}
from {êt+h, t = 1, . . . , T − h} and, using these, building y∗t+h keeping the regressors �xed. However,

this equivalence is not necessarily true for other moments.
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Given (31) and (49), if follows that

√
T
(
θ̂∗ (ω)− θ̂

)
=

N∑
i=1

ωiÂi,T︸ ︷︷ ︸
=ÂT (w)

+
N∑
i=1

ωiPi,T

(
1√
T

H′e∗
)
, (52)

where we let Âi,T = âi,T + Pi,T

(
1√
T

H′b̂(i)
)
. Therefore, V∗ij,T (as de�ned in (32)) can be written

as V∗ij,T = Pi,TΩ∗TP′j,T , where Ω∗T ≡ V ar∗
(
T−1/2H′e∗

)
= V ar∗

(
T−1/2

∑T−h
t=1 hte

∗
t+h

)
. Thus, condi-

tional on the observed data, the dependence structure of the scaled average of the bootstrap regression

scores{hte∗t+h} dictates the consistency of the bootstrap variance V∗T (w) toward the asymptotic vari-

ance V (w) .

Next, we provide a set of high level conditions on {hte∗t+h} that will allow us to characterize the

bootstrap distribution of θ̂∗ (ω) .

Condition (A*): 1√
T

H′e∗
d∗→ N(0(p+q)×1,Ω

∗), in probability, such that Ω∗ > 0 with Ω∗ ≡ p lim
T→∞

Ω∗T =

Ω.

Condition (B*): For i, j = 1, . . . , N, V∗ij ≡ p lim
T→∞

V∗ij,T = Vij .

Condition A* requires the bootstrap regression scores to obey a central limit theorem in the boot-

strap world. This condition is rather standard in bootstrapping model selection context. More specif-

ically, when we apply weight 1 to the full model and weight 0 to all other models, we have θ̂ (ω) = θ̂,

AT (w) = ÂT (w) = 0, and therefore in such a context, under Assumption 2, Condition A* is su�cient

to show the �rst-order asymptotic validity of the bootstrap, i.e.,

sup
x∈Rp+q

∣∣∣P ∗ (√T (θ̂∗ (ω)− θ̂
)
≤ x

)
− P

((√
T
(
θ̂ (ω)− θ

))
≤ x

)∣∣∣→P 0, (53)

as T →∞.

Condition B* mimics the cross-sectional dependence of e
(i)
t+h over models i = 1, . . . , N. It is useful

to note that once Condition A* is satis�ed (in particular, when p lim
T→∞

Ω∗T = Ω), we only need to show

that Pi,T →P Pi to conclude that Condition B* holds.

Theorem 3.2. Let Assumptions 1 and 2 hold. Assume (24) where e
∗(i)
t+h is obtained either by (44) or

by (48) for which Conditions A* and B* are satis�ed, then as T →∞
√
T
(
θ̂∗ (ω)− θ̂

)
− ÂT (w)→d∗ N(0(p+q)×1,V (w)), (54)

in prob-P.

Theorem 3.2 implies that

sup
x∈Rp+q

∣∣∣P ∗ (√T (θ̂∗ (ω)− θ̂
)
− ÂT (w) ≤ x

)
− P

((√
T
(
θ̂ (ω)− θ

)
−AT (w)

)
≤ x

)∣∣∣→P 0, (55)

as T → ∞, thus justifying the use of the bootstrap distribution of
√
T
(
θ̂∗ (ω)− θ̂

)
− ÂT (w) as a

consistent estimator of the distribution of
√
T
(
θ̂ (ω)− θ

)
− AT (w) =

√
T
(
θ̂ (ω)−

(
θ + AT (w)√

T

))
.
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In particular, the bootstrap can be used to construct percentile-type intervals for θ + AT (w)√
T

. A

100 (1− α) % nominal level symmetric bootstrap percentile con�dence interval for θ + AT (w)√
T

is given

by

θ̂ (ω)± T−1/2c∗1−α, (56)

where c∗1−α is such that P ∗
(∣∣∣√T (θ̂∗ (ω)− θ̂

)
− ÂT (w)

∣∣∣ ≤ c∗1−α) = 1−α. Unfortunately, our param-

eter of interest is θ and not θ+ AT (w)√
T
. One may construct an unbiased bootstrap percentile con�dence

interval for θ by using

θ̂ (ω)± T−1/2c∗1−α −
ÃT (w)√

T
, (57)

where ÃT (w) ≡
∑N

i=1 ωiÃi,T , with Ãi,T ≡
[
Pi,T

(
1
T H′H

)
− Ip+q

]
S0δ̂, and where δ̂ =

√
T γ̂, such that

γ̂ is given in (7) and is the estimate from the full model.

Note that ÃT (w) is not a consistent estimator of AT (w) but is asymptotically unbiased. This is

the reason why we call (57) "unbiased bootstrap percentile con�dence interval for θ" and not simply as

usual in the bootstrap literature "bootstrap percentile con�dence interval for θ". Result in Theorem

3.2 does not imply that
√
T
(
θ̂∗ (ω)− θ̂

)
→d∗ N(AT (w) ,V (w)).

Remark 4. Theorem 3.2 does not imply that the distributions of
√
T
(
θ̂∗ (ω)− θ̂

)
and
√
T
(
θ̂ (ω)− θ

)
are close, in the sense that (53) holds. This negative result does not contradict Hjort and Claeskens

(2003) (cf. Section 10.6) regarding the invalidity of bootstrapping method on the weighted average of γ̂i

in the framework of local alternative.

As discussed by Shao and Tu (1995) (pp 79), Gonçalves and White (2004) and lucidly pointed

out by Gonçalves et al. (2019), convergence in distribution of a random sequence does not imply

convergence of moments. Therefore, Theorem 3.2 does not by itself justify using the covariance matrix

of the bootstrap distribution of
√
T
(
θ̂∗ (ω)− θ̂

)
− ÂT (w), given by

lim
B→∞

(1/B)
B∑
b=1

T
(
θ̂∗(b) (ω)− θ̂∗ (ω)

)(
θ̂∗(b) (ω)− θ̂∗ (ω)

)′
, (58)

where θ̂∗ (ω) = (1/B)
∑B

b=1 θ̂
∗(b) (ω) with B the number of bootstrap replications, to consistently

estimate the asymptotic covariance matrix of θ̂ (ω). Nevertheless, given that

V ar∗
[√

T
(
θ̂∗ (ω)− θ̂

)
− ÂT (w)

]
= V ar∗

[√
T
(
θ̂∗ (ω)

)]
,

and given Theorem 3.2, a su�cient condition for the consistency of the bootstrap covariance estimator

in (58) is that

{[√
T
(
θ̂∗ (ω)− θ̂

)
− ÂT (w)

] [√
T
(
θ̂∗ (ω)− θ̂

)
− ÂT (w)

]′}
is uniformly integrable,

which is implied by the condition that

E∗
∣∣∣[√T (θ̂∗ (ω)− θ̂

)
− ÂT (w)

]∣∣∣2+δ′ = OP (1) (59)
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for some small δ′ > 0.

We now consider the special case of the MBB and the NBB schemes to generate e
∗(i)
t+h in step 2

of Algorithm 1. Thereafter we will consider the special case of the DWB and the blocking external

bootstrap (BEB) method schemes to generate e
∗(i)
t+h in step 2 of Algorithm 2.

3.2.3 Special case for Algorithm 1

The �rst scheme we consider is the MBB. In step 2 of Algorithm 1, with the MBB method the set of

indices are formally given by (42). Therefore, the bootstrap residuals are given by

ê
∗(i)
(j−1)`+s+h = ê

(i)
Ij+s+h

− b̂(i)Ij+s+h −
1

T − h− `+ 1

T−h−`+1∑
j=1

ê(i)(j−1)+s+h − b̂
(i)
(j−1)+s+h︸ ︷︷ ︸

=ê(j−1)+s+h

+ b̂
(i)
(j−1)`+s+h,

(60)

for j = 1, . . . , k, s = 1, . . . , `, i = 1, . . . , N, where Ij are i.i.d random variables distributed uniformly on

{0, . . . , T − h− `} .5

Theorem 3.3. Suppose that a blocking-based residual resampling is used to generate bootstrap residual

samples
{
e
∗(i)
t+h

}
, such that in step 2 of Algorithm 1 e

∗(i)
t+h is given by (60). Let Assumptions 1 and

2 be true, and Σ−1T = O (1) , where ΣT =
∑T−h

t=1

∑T−h
s=1 Cov (htet+h,hses+h). If `T → ∞ such that

`T = o
(
T 1/2

)
, as T →∞, then the conclusions of Theorem 3.2 follow. If in addition, for some δ′ > 0,

λ2+δ
′

max (Pi,T ) = Op (1), where λmax (Pi,T ) denotes the largest eigenvalue of Pi,T , then (59) holds.

3.2.4 Special case for Algorithm 2

The dependent wild bootstrap (DWB) was proposed by Shao (2010) for smooth function of the sample

mean with time series observations.6 The DWB di�ers from the BEB by smoothing the external draw

across blocks. When specialized in our context, in step 2 of Algorithm 2, we construct bootstrap

5Similarly for the NBB method, in step 2 of Algorithm 1, the set of indices are formally given by (43). Thus the NBB
analog of (60) is given as follows

ê
∗(i)
(j−1)`+s+h = ê

(i)
Jj+s+h

− b̂(i)Jj+s+h −
1

k

k∑
j=1

(
ê
(i)

(j−1)`+s+h − b̂
(i)

(j−1)`+s+h

)
+ b̂

(i)

(j−1)`+s+h, (61)

for j = 1, . . . , k, s = 1, . . . , `, i = 1, . . . , N, where Jj are i.i.d random variables distributed uniformly on {0, . . . , k − 1} .
6The BEB method, which was �rst proposed by Yeh (1998) for a linear regression with �xed scalar regressor and

strong mixing errors has been analyzed in other contexts by Shao (2011), Smeekes and Urbain (2013) and Djogbenou et
al. (2015). The related wild block bootstrap method of Hounyo (2017) and Hounyo et al. (2017) can also be used as
well in step 2 of Algorithm 2. For instance, specializing to BEB in our context, in step 2 of Algorithm 2, �rst we form
non-overlapping blocks of size ` of consecutive residuals, then construct bootstrap residual samples as follows

e
∗(i)
(j−1)`+s+h =

(
ê
(i)

(j−1)`+s+h − b̂
(i)

(j−1)`+s+h

)
· η∗(j−1)`+s+h + b̂

(i)

(j−1)`+s+h, (62)

with η∗(j−1)`+s+h = v∗j , j = 1, . . . , k, s = 1, . . . , `, where v∗j is an external random variable such that v∗j ∼i.i.d.(0, 1)
across j = 1, . . . , k. Then, the bootstrap residuals are obtained by multiplying each residual by an external random
variable that is the same for all observations within a block j. More importantly, in our context, we impose the vector
η∗ = (η∗1+h, . . . , η

∗
T ) to be the same for all i = 1, . . . , N.
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residual samples as follows

e
∗(i)
t+h =

(
ê
(i)
t+h − b̂

(i)
t+h

)
︸ ︷︷ ︸

=êt+h

· η∗t+h + b̂
(i)
t+h, t = 1, . . . , T − h, (63)

where η∗ =
(
η∗1+h, . . . , η

∗
T

)′
is a random vector with mean 0(T−h)×1 and covariance matrix K, with

typical element Kst = E∗ (η∗s · η∗t ) = kDWB

(
t−s
lT

)
, where kDWB (·) is a kernel function and lT a

bandwidth parameter. Following Shao (2010), in this paper we assume that η∗ is `T -dependent. In

Section 5 we set η∗ = Kη, with η ∼ N (0, IT−h) . Then η∗t+h is a local weighted average of external

draws, thereby making the neighbouring observations time dependent. In addition, since the vector

η∗ is set to be the same for all i = 1, . . . , N, this preserves the cross-sectional dependence of ê
(i)
t+h over

di�erent models i = 1, . . . , N as well.

In order to state our result for the DWB, we follow Djogbenou et al (2015) and require a slightly

stronger dependence and moment conditions than Assumption 2. Speci�cally, we impose:

Assumption 2':

(a) For some r > 2, {(h′t, et+h)} is a fourth-order stationary strong mixing sequence of size − 3r
r−2 and

E (et+h|Ft) = 0, where Ft = σ (ht,ht−1, . . . ; et, et−1, . . .) ;E ‖ht‖4r < C and E ‖et+h‖4r < C.

The other parts of this assumption remain as before. Assumption 2' is analogous to the assumptions

made in Andrews (1991, Lemma 1) to prove consistency of the HAC estimator.

We also follow Shao (2010) and make the following restriction on the class of kernels.

Assumption 3. kDWB : R → [0, 1] is symmetric with compact support on [−1, 1] , kDWB (0) = 1,

lim
x→0

(1− kDWB (x)) / |x|q 6= 0 for some q ∈ (0, 1] such that ψ (ξ) = 1
2π

∫ +∞
−∞ kDWB (x) exp (iξx) dx ≥ 0,

for all ξ ∈ R.

The condition ψ (ξ) ≥ 0 ensures that the matrix K is positive de�nite. These assumptions are

satis�ed by the Bartlett and Parzen kernels but not by the truncated, quadratic spectral and the

Tukey-Hanning kernels (see e.g., Andrews (1991) pp. 822-823). By imposing Assumptions 2' and 3,

we are able to build on results in Andrews (1991) and Shao (2010) when proving our result.

Theorem 3.4. Suppose that a dependent wild-based residual resampling is used to generate bootstrap

residual samples
{
e
∗(i)
t+h

}
, such that in step 2 of Algorithm 2 e

∗(i)
t+h is given by (63) with E∗

∣∣η∗t+h∣∣2r ≤
∆ < ∞ for some r > 2. Under Assumptions 1, 2', and 3, if lT → ∞ such that T−1T `2(r+1)/r → 0, as

T → ∞, then the conclusions of Theorem 3.2 follow. If in addition, for some δ′ > 0, λ2+δ
′

max (Pi,T ) =

Op (1), where λmax (Pi,T ) denotes the largest eigenvalue of Pi,T , then (59) holds.

This result is the DWB analog of Theorem 3.3.7 Both theorems allow us to use the two methods

to estimate the asymptotic variance of a combined estimator as stated in part 6 of Algorithms 1 and

2.
7For the NBB and BEB methods, similar results as in Theorems 3.3 and 3.4 hold, respectively.
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4 Monte Carlo simulations

In this section we assess the �nite sample properties of the bootstrap methods discussed in Section 3.

The data-generating process is similar to the one used by Liu and Kuo (2016). Speci�cally, we consider

the linear regression model:

yt+h =
k∑
j=1

βjxjt + et+h, (64)

xjt = ρxxjt−1 + ujt for j ≥ 2, (65)

where xjt are AR(1) processes with ρx = 0.5 and 0.9 and we set x1t = 1 to be the intercept. We draw

(u2t, . . . , ukt)
′ from a joint normal distribution N (0,Qu) , where the diagonal elements of Qu are 1

and the o�-diagonal elements are ρu, such that ρu ∈ {0.25, 0.50, 0.75, 0.9}. To obtain the error term

et, we �rst generate an AR(1) process εt = 0.5εt−1 + εt, where εt ∼ N (0, 0.75) . Then the error term

is constructed by et = 3−1/2
(
1− ρ2x

)
x2ktεt. We determined the regression coe�cients and the local

parameters as follows:

β =
c√
T

(
1,
k − 1

k
, . . . ,

1

k

)′
,

and

δj =
√
Tβj =

c (k − j + 1)

k
,

for j ≥ 2. The parameter c is selected to vary the population R2 = β̃′Qxβ̃/
(

1 + β̃′Qxβ̃
)
, where

β̃ = (β2, . . . , βk)
′ and Qx =

(
1− ρ2x

)
Qu. The population R

2 is set to vary on a grid between 0.1 and

0.9. We set k = 5 and the sample size T = 200. We consider all possible models, and hence the

number of models is N = 32. We consider two forecasting horizons, h = 1 and h = 4. We use the

equal-weighted (ωi = 1/N , i = 1, . . . , N,) forecast combinations. In the simulations, we consider the

following four approaches to compute the variance of the combined forecast:

(i) naïve bootstrap approach, that resample the entire (N × 1)-vector of regression residuals over

time, (labelled naïve); 8

(ii) our proposed blocking-based residual method (see Algorithm 1), using the MBB to resample

residuals (labelled MBB);

(iii) our proposed general dependent wild-based residual resampling (see Algorithm 2), using the

DWB to resample residuals (labelled DWB);

(iv) a plug-in approach, based on a direct estimator of ΣyT+h|T , de�ned below and given by (66)

(labelled Plug-in);

For the plug-in approach, we compute Σ̂yT+h|T , a (consistent) plug-in estimator of the asymptotic

8For the naïve approach, we use the DWB method to obtain bootstrap residuals.
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variance ΣyT+h|T , as follows

Σ̂yT+h|T = h′T V̂T (w) hT =
N∑
i=1

N∑
j=1

ωiωjV̂ij,T , (66)

where

V̂T (w) =
N∑
i=1

N∑
j=1

ωiωjV̂ij,T , with V̂ij,T = Pi,T Ω̂TP′j,T ,

such that

Ω̂T = T−1
T∑
t=1

ŝtŝ
′
t + T−1

`T∑
h=1

(
1− h

`T + 1

) T∑
t=h+1

(
ŝtŝ
′
t−h + ŝt−hŝ

′
t

)
, (67)

where ŝt+h = htêt+h. More speci�cally, in our simulations to compute Ω̂T , we use a HAC estimator

of Ω using a Bartlett kernel with bandwidth `T selected by the data-based rule from Andrews (1991).

For the DWB, we use the same bandwidth `T selected to compute Ω̂T . Similarly, to select the block

size, for the MBB, we rely on the asymptotic equivalence between the MBB and the Bartlett kernel

variance estimators, and then choose the block size equal to the bandwidth `T chosen by Andrews's

automatic procedure for the Bartlett kernel.

We compare the (four) estimators of the asymptotic variance ΣyT+h|T by looking at their MSE over

1000 replications. We use 499 bootstrap replications.

Figure 1: MSE for heteroscedastic linear regression models (ρx = 0.5, h = 4).

We �rst compare the MSE when the AR(1) coe�cient of the predictor equal 0.5. The results are

presented in Figure 1, for h = 4. The results for h = 1 (not reported) are qualitatively similar to those
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Figure 2: MSE for heteroscedastic linear regression models (ρx = 0.9, h = 4).

reported for h = 4. The naïve bootstrap-based estimator has much larger MSE than other estimators.

In particular, our proposed procedures (MBB and DWB) outperform the naïve bootstrap approach.

Although all three methods MBB, DWB and Plug-in are asymptotically equivalent, the estimator

based on the MBB is quite robust to di�erent values of R2 and has much lower MSE than those based

on the DWB and the Plug-in approaches. In most cases, the Plug-in and the DWB estimators have

quite similar performance.

Figure 2 displays the corresponding results of Figure 1, but now with ρx = 0.9. Overall, results

presented in Figure 2, suggest that the ranking of estimators when ρx = 0.9 is qualitatively quite similar

to that for ρx = 0.5. However, for ρu = 0.50, 0.75, and 0.9, the Plug-in and the DWB estimators do

no longer have similar performance. The gains associated with the DWB method over the Plug-in

approach are now more distinguishable and can be quite substantial.

5 Empirical illustration

In this section we illustrate the desirability of using our bootstrapping approaches to compute the

variance of combined estimators. In particular, we follow Granger and Jeon (2004) and revisit the

empirical �ndings of Kozicki (1999) who investigated the usefulness of the Taylor rule recommendations

to policymakers based on combined estimates. Speci�cally, Kozicki (1999) estimated Taylor-types rules

for 24 combinations from reasonable variations in the alternative de�nitions of in�ation and output gap

with monthly data from 1983-1997. In their pioneering approach Granger and Jeon (2004) reported

estimates of the variance of the combined parameters using bootstrap technique. They reported that
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the variance from their bootstrap based-approach were considerably smaller than that from simple

average over individual models.

We follow Kozicki (1999) and Granger and Jeon (2004) (cf. Section 8) and consider four in�ation

measures and six di�erent measures of the output gap (which amounts to 24 di�erent models). As the

in�ation measure, we use CPI in�ation, core CPI in�ation, GDP price in�ation, and expected in�ation

collected from the Survey of Professional Forcasters. For the output gap variable, we consider output

gap measures from the Congressional Budget O�ce (CBO), the International Monetary Fund (IMF),

the Organization for Economic Cooperation and Development (OECD), Standard and Poor (DRI), an

approximation of the de�nition of the output gap used by Taylor (Taylor), and a recursive version of

the Taylor method (Recursive). As emphasized by Kozicki (1999), these six alternative measures are

reasonable approximations to the de�nition of true output gap for use in a Taylor Rule equation.9 The

precise de�nition of the variables and data sources can be found in Kozicki (1999). We estimate the

following equation for all 24 combinations from di�erent measure of in�ation and output gap:

rt = c+ (1 + α)πt−1 + βygt−1, (68)

where rt is the federal funds rate at time t, c is a constant, πt−1 and y
g
t−1 are the in�ation and output

gap at t− 1, respectively, cf. Granger and Jeon (2004).

We consider di�erent methods to compute

√
var

(∑N
i=1 ωiα̂i

)
and

√
var

(∑N
i=1 ωiβ̂i

)
, with ωi =

1
N , i = 1, . . . , N = 24. First, we implement the naïve residual-based bootstrap approach, which

consists of stacking all residuals at time t into a vector, and then resample these cross-sectional vectors

of residuals over time. Thus, it is not valid in our present empirical context (of combined estimators)

as shown in Section 3.1. Second, we consider our proposed new procedure.

Figure 3 reveals that the residuals from our full model have signi�cant autocorrelation. Hence, a

simple i.i.d bootstrap or the WB may not be appropriate to capture the observed serial dependence

in the residuals. For our proposed resampling method, we consider MBB. We use B = 9999 bootstrap

replications. The choice of the block size for the MBB is important. As in the simulation study,

we consider the full model where we included all available regressors (a constant term, the above six

measures of in�ation and four measures of output gaps). Then, we use Andrews's (1991) automatic

procedure to compute a data-driven block size `∗ to implement our proposed procedure. Table 1 reports

our results.

In the �rst two columns of Table 1, we report our replication of Kozicki's (1999) 24 individual

Taylor rule equations. These estimates are seen to be very similar to those reported in Granger and

Jeon (2004). We calculated the average values of the in�ation and output gap coe�cients to be

0.637 and 0.131, respectively. Granger and Jeon (2004) estimated these coe�cients to be 0.539 and

0.191, respectively, and are close, given that we regenerated the original sample. Other estimates in

9We thank Sharon Kozicki for guiding us in reconstructing her data set. Since DRI has merged with IHS (now called
IHS-Markit), we use the IHS-Markit output gap instead of the original DRI measure.
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Table 1 (see the two right hand side columns) are obtained using the MBB method as explained in

Section 3.2.3 (see also Algorithm 1).10 On average the selected data-driven block size for the MBB was

`∗ = 5. Based on our proposed resampling approach (using MBB), the estimated standard error of the

combined coe�cients estimated for in�ation and output are 0.090 and 0.042, respectively (see last row

of Table 1). Granger and Jeon (2004) obtained these values to be 0.045 and 0.021, respectively. Our

estimates are signi�cantly (two times) larger than those reported by Granger and Jeon (2004). The

simple averages of the standard errors of the two parameters over the 24 individual models are very

close to those obtained using our new proposed bootstrapping approach.

We also computed the standard errors of the combined coe�cients estimated (i.e.,
∑N

i=1 ωiα̂i (for

in�ation) and
∑N

i=1 ωiβ̂i (for output gap)) using an i.i.d. bootstrap procedure, resampling regression

residuals independently across models i = 1, . . . , N = 24 (not reported in Table 1). We found that they

are very close to those obtained by Granger and Jeon (2004), and were 0.045 and 0.020, respectively.

Hence, our replication results suggest that in Granger and Jeon (2004) the bootstrap procedure did

not take into account the dependence across models.

We also report the standard errors of the two coe�cients using a non-robust cross-sectional re-

sampling approach, which accommodates the serial correlation in the errors (by using the MBB) but

not the cross-sectional dependence between models (by resampling regression residuals independently

across models). Those estimates were found to be 0.021 and 0.012, respectively, and are signi�catively

less than those using our resampling approach. Thus, the primarily source of underestimation of the

standard errors is not due to the lack of adjustment for serial correlation but due to the failure of the

bootstrap procedure in Granger and Jeon (2004) to capture the cross-sectional dependence.

As expected, the naïve bootstrap procedure which uses the MBB to resample the whole vector

of regression residuals over time, overestimates the standard error of the combined coe�cients quite

signi�cantly by inducing an additional term in the bootstrap variance of averaging estimators (as

explained in Section 3.1). These estimates were found to be 0.376 and 0.169, respectively.

In summary, these results suggest that a resampling approach which imposes independence across

models underestimates the standard error of the combined coe�cients quite signi�cantly by failing to

take into account the correlation between models. In contrast, a naïve residual-based bootstrap ap-

proach which resamples the entire vector of regression residuals over time t, overestimates the standard

error of the combined coe�cients. Our replication results also suggest that in Granger and Jeon (2004)

the bootstrap procedure did not take into account the dependence across models.

10For sake of brevity, we only report in Table 1 results based on MBB using Algorithm 1. Alternatively, we might have
used Algorithm 2, but note that in implementing step 2 of either of the algorithms, a number of resampling methods are
available (e.g., NBB of Carlstein (1986), SB of Politis and Romano (1994) or BEB method of Yeh (1998), among others).
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Table 1: Taylor rule: combined estimators from di�erent models, resampling based on the MBB.

Kozicki (1999) Moving Blocks Bootstrap
Output gap measure In�ation measure S.D.

In�ation Output In�ation Output

CBO CPI in�ation -0.004 0.023 0.081 0.046
CBO Core CPI in�ation 0.420 0.125 0.099 0.046
CBO GDP price in�ation 0.949 0.326 0.103 0.048
CBO Expected in�ation 1.197 0.328 0.098 0.047
OECD CPI in�ation 0.016 -0.066 0.081 0.044
OECD Core CPI in�ation 0.438 0.088 0.100 0.044
OECD GDP price in�ation 0.951 0.258 0.105 0.046
OECD Expected in�ation 1.278 0.326 0.101 0.046
IMF CPI in�ation -0.022 0.099 0.082 0.047
IMF Core CPI in�ation 0.419 0.193 0.099 0.047
IMF GDP price in�ation 0.942 0.377 0.102 0.049
IMF Expected in�ation 1.164 0.353 0.097 0.048
HIS CPI in�ation 0.050 -0.236 0.081 0.041
HIS Core CPI in�ation 0.375 -0.059 0.102 0.042
HIS GDP price in�ation 0.855 0.098 0.108 0.044
HIS Expected in�ation 1.307 0.246 0.106 0.045
Taylor CPI in�ation -0.005 0.016 0.082 0.042
Taylor Core CPI in�ation 0.396 0.083 0.099 0.042
Taylor GDP price in�ation 0.865 0.248 0.101 0.042
Taylor Expected in�ation 1.136 0.262 0.097 0.042
Recursive CPI in�ation 0.045 -0.166 0.081 0.033
Recursive Core CPI in�ation 0.382 -0.061 0.100 0.033
Recursive GDP price in�ation 0.863 0.091 0.107 0.035
Recursive Expected in�ation 1.263 0.184 0.104 0.036

Combined estimators
Simple average over 24 models 0.637 0.131 0.096 0.043
Not allowing cross-sectional dependence 0.021 0.012
Resampling vector of residuals as whole over time 0.376 0.169
Our proposed resampling approach 0.090 0.042

Notes: This table provides the estimated coe�cients and standard errors from the estimation of the
Taylor rule (see equation (68)) for all 24 combinations from di�erent measure of in�ation and output
gap. `Not allowing cross-sectional dependence' means resampling independently across models, but
allowing for serial correlation (by using the MBB to obtain bootstrap errors). `Resampling vector of
residuals as whole over time' is the naïve residual-based bootstrap approach, which consists to stack
all residuals at time t into a vector, then resample these cross-sectional vectors of residuals over time
as discussed in Section 3.1. We use 9999 bootstrap replications.
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Figure 3: Sample autocorrelation function of estimated residual.

6 Conclusion

The aim of this paper has been to provide conditions under which a residual-based bootstrap method

can provide a consistent estimator of the asymptotic variance of a combined forecast and/or the asymp-

totic covariance matrix of a weighted average of a parameter estimates across di�erent models with

�xed weights. Our results show that a naïve residual-based bootstrap approach, which consists of

stacking all residuals at time t into a vector, and then resampling these cross-sectional vectors of resid-

uals over time is invalid in the context of model averaging. We propose and theoretically justify two

general residual-based bootstrap resampling approaches for model averaging in predictive regressions to

estimate the variance of a combined estimator. We discuss the application of the two general methods

when regression residuals are resampled by either MBB of Künsch (1989) and Liu and Singh (1992),

NBB of Carlstein (1986), DWB of Shao (2010) and BEB method of Yeh (1998) and Shao (2011).

We illustrate our methods using the bootstrap estimates of the Taylor rule parameters reported by

Granger and Jeon (2004), and show that underestimation of the sampling variability of the combined

estimator can be substantial if the cross-sectional dependence between the models is not properly

accounted for while resampling. We also show that overestimation of the sampling variability of the

combined estimator can be substantial if one relies on a common approach of resampling cross-sectional

vectors over time (in order to preserve the cross-sectional dependence between models).
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A Appendix: Proofs

Proof of Theorem 3.1 part (a). Given (25) and (26), note that we can decompose the bootstrap

OLS estimator for the ith submodel as

θ̂∗i − θ̂i =
(
H′iHi

)−1
H′ie

∗(i).

Given that Hi = HSi, it follows that

√
TSi

(
θ̂∗i − θ̂i

)
= Pi,T

(
1√
T

H′e∗(i)
)
. (A.1)

√
T
(
Siθ̂
∗
i − θ̂

)
=
√
T

[
1

T
Pi,TH′ −

(
H′H

)−1
H′
]

y︸ ︷︷ ︸
=âi,T

+ Pi,T

(
1√
T

H′e∗(i)
)
. (A.2)

and

√
T
(
θ̂∗ (ω)− θ̂

)
=

N∑
i=1

ωi
√
T
(
Siθ̂
∗
i − θ̂

)
=

N∑
i=1

ωiâi,T︸ ︷︷ ︸
=âT (w)

+
N∑
i=1

ωiPi,T

(
1√
T

H′e∗(i)
)
. (A.3)

Given (A.2), we can write

Cov∗
[√

T
(
Siθ̂
∗
i − θ̂

)
,
√
T
(
Sj θ̂
∗
j − θ̂

)]
= Cov∗

[
âi,T + Pi,T

(
1√
T

H′e∗(i)
)
, âj,T + Pj,T

(
1√
T

H′e∗(j)
)]

= Cov∗
[
Pi,T

(
1√
T

H′e∗(i)
)
,Pj,T

(
1√
T

H′e∗(j)
)]

= V∗ij,T .(A.4)

Therefore, we have

V∗ij,T = Pi,TCov
∗

[
1√
T

T−h∑
s=1

hse
∗(i)
s+h,

1√
T

T−h∑
t=1

hte
∗(j)
t+h

]
P′j,T

= Pi,T

[
T−1

T−h∑
t=1

T−h∑
s=1

hsh
′
tCov

∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)]
P′j,T . (A.5)

Next, remark that by de�nition

Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= E∗

(
e
∗(i)
s+he

∗(j)
t+h

)
− E∗

(
e
∗(i)
s+h

)
E∗
(
e
∗(j)
t+h

)
.

Given (34), if s 6= t, we have Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= 0 (since e

∗(i)
t+h is independent across t conditionally
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on the observed time series), whereas if s = t, we have

Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= E∗

((
ê
(i)
t+hυ

∗
t+h

)(
ê
(j)
t+hυ

∗
t+h

))
− E∗

(
ê
(i)
t+hυ

∗
t+h

)
E∗
(
ê
(j)
t+hυ

∗
t+h

)
= ê

(i)
t+hê

(j)
t+h

[
E∗
(
υ∗2t+h

)
− E∗

(
υ∗t+h

)2]︸ ︷︷ ︸
=1

=
(
êt+h + b̂

(i)
t+h

)(
êt+h + b̂

(j)
t+h

)
=

(
êt+h + b̂

(i)
t+h,1 + b̂

(i)
t+h,2

)(
êt+h + b̂

(j)
t+h,1 + b̂

(j)
t+h,2

)
= ê2t+h + b̂

(i)
t+h,1b̂

(j)
t+h,1

+êt+hb̂
(j)
t+h,1 + êt+hb̂

(j)
t+h,2 + b̂

(i)
t+h,1êt+h + b̂

(i)
t+h,1b̂

(j)
t+h,2 + b̂

(i)
t+h,2êt+h + b̂

(i)
t+h,2b̂

(j)
t+h,1 + b̂

(i)
t+h,2b̂

(j)
t+h,2,

where the second equality uses the fact that V ar∗
(
υ∗t+h

)
= 1, and the third and fourth equalities

follows given (36) and (37), respectively. Thus, V∗ij,T can be written as follows

V∗ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
tê

2
t+h

]
P′j,T + ṼWB

ij,T + V̌WB

ij,T , (A.6)

such that

ṼWB

ij,T = Pi,T

[
T−1

T−h∑
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hth
′
tb̂

(i)
t+h,1b̂

(j)
t+h,1

]
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and

V̌WB
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[
T−1
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hth
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]
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The desired result follows given the de�nitions of b̂
(i)
t+h,1, b̂

(i)
t+h,2 (see (37)) and Assumptions 1 and 2.
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More speci�cally, we can write

V̌WB

ij,T = Pi,T

[
T−1

T−h∑
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Similarly, ṼWB

ij,T can be written as
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ij,T = Pi,T
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Finally, result follows immediately by using (33), (A.6), and recalling that under our assumptions

p lim
T→∞

[
Pi,T

(
T−1

∑T−h
t=1 hth

′
tê

2
t

)
P′j,T

]
= Vij , and p lim

T→∞
ṼWB

ij,T = ṼWB
ij .

Proof of Theorem 3.1 part (b). The proof for the i.i.d. bootstrap follows similarly the same

arguments provided in the proof of part (a) of Theorem 3.1.

Proof of Theorem 3.2. Given (31) and (49), to obtain the desired result, we need to show that

(a) Pi,T
p→ Pi, (b)

1√
T

H′e∗
d∗→ N(0(p+q)×1,Ω) in probability, and (c) V∗ij,T

p→ Vij . Part (a) holds

directly under Assumption 2, because the selection matrix Si is not random with element either 0 or

1. Part (b) follows under Condition A*, whereas part (c) holds under Condition B*.

Proof of Theorem 3.3. We proceed as follows: We �rst show the �rst part of Theorem 3.3, next

we verify condition (59). To show the �rst part of Theorem 3.3, we need to verify Conditions A* and

B*.

Starting with Condition A*, we use Theorem 3.1 of Fitzenberger (1998) by verifying his as-

sumptions. Given Assumption 2 and the additional condition in the statement of Theorem 3.3 i.e.,

Σ−1T = O (1) , where ΣT =
∑T−h

t=1

∑T−h
s=1 Cov (htet+h,hses+h), Fitzenberger's (1998) Assumptions

(A1), (A2), (A3), (A4) and (A5) hold directly.

Condition B* follows by noting that by Condition A*, Ω∗T = V ar∗
[

1√
T

∑T−h
t=1 hte

∗
t+h

]
p→ Ω, and
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under Assumption 2 Pi,T
p→ Pi.

Finally, we verify condition (59). For this purpose, we need to introduce some additional notations.

In the following, for any matrix A, ‖A‖1 denotes the matrix norm de�ned by ‖A‖21 = maxx 6=0
x′A′Ax

x′x .

Notice that for A symmetric, ‖A‖1 is equal to the largest eigenvalue of A, i.e., ‖A‖1 = λmax (A) .

For some small δ′ > 0, we can write

E∗
∣∣∣[√T (θ̂∗ (ω)− θ̂

)
− ÂT (w)

]∣∣∣2+δ′ = E∗

∣∣∣∣∣
N∑
i=1

ωi

[√
T
(
Siθ̂
∗
i − θ̂

)
− Âi,T

]∣∣∣∣∣
2+δ′

≤ N1+δ′
N∑
i=1

ω2+δ′

i E∗
∣∣∣[√T (Siθ̂

∗
i − θ̂

)
− Âi,T

]∣∣∣2+δ′

= N1+δ′
N∑
i=1

ω2+δ′

i E∗

∣∣∣∣∣Pi,T

(
1√
T

T−h∑
t=1

hte
∗
t+h

)∣∣∣∣∣
2+δ′

≤ N1+δ′
N∑
i=1

ωi‖Pi,T ‖2+δ
′

1︸ ︷︷ ︸
=λ2+δ

′
max

T−(2+δ
′)/2E∗

∣∣∣∣∣∣∣
T−h∑
t=1

hte
∗
t+h − E∗

(
hte
∗
t+h

)︸ ︷︷ ︸
=0


∣∣∣∣∣∣∣
2+δ′

≡ C

N∑
i=1

Bi,

where the �rst inequality uses the cr-inequality. The last inequality uses the fact that for any δ′ > 0,

and 0 ≤ ωi ≤ 1, we have 0 ≤ ω2+δ′

i ≤ ωi ≤ 1.

Because N is �nite, it follows that to prove condition (59), it su�ces to show that Bi= Op (1).

Thus, we have

Bi ≤ ωiλ
2+δ′
max (Pi,T )T−(2+δ

′)/2E∗

∣∣∣∣∣
T−h∑
t=1

∣∣hte∗t+h − E∗ (hte∗t+h)∣∣2
∣∣∣∣∣
(2+δ′)/2

≤ ωiλ
2+δ′
max (Pi,T )T−(2+δ

′)/2E∗

∣∣∣∣∣∣
(
T−h∑
t=1

∣∣hte∗t+h − E∗ (hte∗t+h)∣∣2+δ′
)2/(2+δ′)

(T − h)1−2/(2+δ
′)

∣∣∣∣∣∣
(2+δ′)/2

= ωiλ
2+δ′
max (Pi,T )T−(2+δ

′)/2 (T − h)(2+δ
′)/2−1

T−h∑
t=1

E∗
∣∣hte∗t+h − E∗ (hte∗t+h)∣∣2+δ′

≤ 22+δ
′
ωiλ

2+δ′
max (Pi,T )

(
T − h
T

)(2+δ′)/2

(T − h)−1
T−h∑
t=1

E∗
∣∣hte∗t+h∣∣2+δ′

= 22+δ
′
ωiλ

2+δ′
max (Pi,T )

(
T − h
T

)(2+δ′)/2

(T − h)−1
k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ E∗ ∣∣∣e∗(j−1)`+s+h∣∣∣2+δ′ ,(A.7)

where the �rst inequality uses the Burkholder's inequality, the second inequality follows by the Holder's

inequality, whereas the last inequality uses the cr-inequality.
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Next, using the de�nitions of et+h and êt+h yields êt+h = et+h − h′t+h

(
θ̂ − θ

)
. Note that we have

k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ E∗ ∣∣∣e∗(j−1)`+s+h∣∣∣2+δ′

=

k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ E∗ ∣∣êIj+s+h − E∗ (êIj+s+h)∣∣2+δ′

≤ C

k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ E∗ ∣∣êIj+s+h∣∣2+δ′

≤ C

k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ E∗ ∣∣∣eIj+s+h − h′Ij+s+h

(
θ̂ − θ

)∣∣∣2+δ′

≤ C

 ∑k
j=1

∑`
s=1

∣∣h(j−1)`+s
∣∣2+δ′ E∗ ∣∣eIj+s+h∣∣2+δ′

+
∑k

j=1

∑`
s=1

∣∣h(j−1)`+s
∣∣2+δ′ E∗ ∣∣∣h′Ij+s+h (θ̂ − θ)∣∣∣2+δ′


≤ C

 ∑k
j=1

∑`
s=1

∣∣h(j−1)`+s
∣∣2+δ′ 1

T−h−`+1

∑T−h−`+1
g=1 |eg−1+s+h|2+δ

′

+
∣∣∣√T (θ̂ − θ)∣∣∣2+δ′∑k

j=1

∑`
s=1

∣∣h(j−1)`+s
∣∣2+δ′ 1

T−h−`+1

∑T−h−`+1
g=1 |hg−1+s+h|2+δ

′

 .(A.8)
Given (A.7) and (A.8) and the fact that under our assumptions λ2+δ

′
max (Pi,T )= OP (1) , to prove that

Bi= Op (1) , it su�ces that Bi,1= Op (1) and Bi,2= Op (1) such that

Bi,1 ≡
∣∣∣√T (θ̂ − θ)∣∣∣2+δ′ (T − h)−1

k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ 1

T − h− `+ 1

T−h−`+1∑
g=1

|hg−1+s+h|2+δ
′
,

and

Bi,2 ≡ (T − h)−1
k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ 1

T − h− `+ 1

T−h−`+1∑
g=1

|eg−1+s+h|2+δ
′
.

For Bi,1, note that because
√
T
(
θ̂ − θ

)
converges in distribution, it follows that

∣∣∣√T (θ̂ − θ)∣∣∣2+δ′ =

OP (1) . Thus, to prove that Bi,1= Op (1) , it su�ces to show that

Bi,1,1 ≡ (T − h)−1
k∑
j=1

∑̀
s=1

∣∣h(j−1)`+s
∣∣2+δ′ 1

T − h− `+ 1

T−h−`+1∑
g=1

|hg−1+s+h|2+δ
′

= Op (1) .
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We have

E |Bi,1,1|

=
(T − h)−1

T − h− `+ 1
E

∣∣∣∣∣∣
∑̀
s=1

k∑
j=1

|hg−1+s+h|2+δ
′
T−h−`+1∑

g=1

|hg−1+s+h|2+δ
′

∣∣∣∣∣∣
≤ (T − h)−1

T − h− `+ 1

∑̀
s=1

E

∣∣∣∣∣∣
k∑
j=1

|hg−1+s+h|2+δ
′
T−h−`+1∑

g=1

|hg−1+s+h|2+δ
′

∣∣∣∣∣∣
≤ (T − h)−1

T − h− `+ 1

∑̀
s=1

E
∣∣∣∣∣∣
k∑
j=1

|hg−1+s+h|2+δ
′

∣∣∣∣∣∣
21/2E

∣∣∣∣∣∣
T−h−`+1∑

g=1

|hg−1+s+h|2+δ
′

∣∣∣∣∣∣
21/2

≤ (T − h)−1

T − h− `+ 1

∑̀
s=1

T − h
`

k∑
j=1

E |hg−1+s+h|2(2+δ
′)

1/2(T − h− `+ 1)

T−h−`+1∑
g=1

E |hg−1+s+h|2(2+δ
′)

1/2

=
(T − h)−1

(T − h− `+ 1)1/2

(
T − h
`

)1/2∑̀
s=1

 k∑
j=1

E |hg−1+s+h|2(2+δ
′)

1/2T−h−`+1∑
g=1

E |hg−1+s+h|2(2+δ
′)

1/2

≤ (T − h)−1

(T − h− `+ 1)1/2

(
T − h
`

)1/2
∑̀
s=1

 k∑
j=1

E |hg−1+s+h|2(2+δ
′)

1/2 ∑̀
s=1

T−h−`+1∑
g=1

E |hg−1+s+h|2(2+δ
′)

1/2

=

[
1

T − h

T−h∑
t=1

E |ht|2(2+δ
′)

]1/2  1

T − h− `+ 1

T−h−`+1∑
g=1

1

`

∑̀
s=1

E |hg−1+s+h|2(2+δ
′)

1/2

= O (1) .

Thus, by Markov's inequality, we have Bi,1,1 =Op (1) . For Bi,2, using the same arguments as for Bi,1,1,

we have

E |Bi,2| ≤

[
1

T − h

T−h∑
t=1

E |ht|2(2+δ
′)

]1/2  1

T − h− `+ 1

T−h−`+1∑
g=1

1

`

∑̀
s=1

E |eg−1+s+h|2(2+δ
′)

1/2

= O (1) ,

This completes the proof.

Proof of Theorem 3.4. The strategy of the proof follows closely that of Theorem 3.3. However,

we highlight the main di�erences. As in that proof, we �rst show the �rst part of Theorem 3.4, next

we verify condition (59). To show the �rst part of Theorem 3.4, we need to verify Conditions A* and

B*.

Starting with Condition A*, as in the proof of Theorem 3 of Djogbenou et al. (2015), we use

Theorem 3.1 of Shao (2010) by verifying his assumptions. In particular, under Assumption 2, {htet+h}
are strong mixing of size − 3r

r−2 for some r > 2 with E ‖htet+h‖2r < C, implying that
∑∞

j=1 α (j)
r
r+2 <

∞ verifying his Assumption 3.1. Next, by using Lemma 1 of Andrews (1991), we also have that
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∑∞
j=1 j

2α (j)
r−2
r <∞ and E ‖htet+h‖2r < C <∞, thus verifying his Assumption 3.2.

Condition B* follows by noting that by Condition A*, Ω∗T = V ar∗
[

1√
T

∑T−h
t=1 htêt+hη

∗
t+h

]
p→ Ω,

and under Assumption 2 Pi,T
p→ Pi. Speci�cally, we have

V∗ij,T = Pi,T

[
T−1

T−h∑
t=1

T−h∑
s=1

hth
′
sêt+hês+hkDWB

(
t− s
lT

)]
︸ ︷︷ ︸

=Ω∗T=V ar
∗
[

1√
T

∑T−h
t=1 htêt+hη

∗
t+h

]
P′j,T

p→ Vij .

Finally we verify condition (59). Given (A.3), for some small δ′ > 0, we can write

E∗
∣∣∣[√T (θ̂∗ (ω)− θ̂

)
− ÂT (w)

]∣∣∣2+δ′
= E∗

∣∣∣∣∣
N∑
i=1

ωi

[√
T
(
Siθ̂
∗
i − θ̂

)
− Âi,T

]∣∣∣∣∣
2+δ′

≤ N1+δ′
N∑
i=1

ω2+δ′

i E∗
∣∣∣[√T (Siθ̂

∗
i − θ̂

)
− Âi,T

]∣∣∣2+δ′

= N1+δ′
N∑
i=1

ω2+δ′

i E∗

∣∣∣∣∣Pi,T

[
1√
T

T−h∑
t=1

htet+hη
∗
t+h −

(
1

T

T−h∑
t=1

hth
′
tηt+h

)
√
T
(
θ̂ − θ

)]∣∣∣∣∣
2+δ′

≤ N1+δ′21+δ
′
N∑
i=1

ωi‖Pi,T ‖2+δ
′

1︸ ︷︷ ︸
=λ2+δ

′
max

E∗

∣∣∣∣∣
(

1√
T

T−h∑
t=1

htet+hηt+h

)∣∣∣∣∣
2+δ′

+N1+δ′
N∑
i=1

ω2+δ′

i λ2+δ
′

max (Pi,T )
∣∣∣√T (θ̂ − θ)∣∣∣2+δ′ E∗ ∣∣∣∣∣

(
1

T

T−h∑
t=1

hth
′
tη
∗
t+h

)∣∣∣∣∣
2+δ′

≡ C
N∑
i=1

(Di,1 + Di,2) .

The last inequality uses the cr-inequality and the fact that for any δ′ > 0, and 0 ≤ ωi ≤ 1, we have

0 ≤ ω2+δ′

i ≤ ωi ≤ 1.

Thus, it su�ces to show that Di,1 + Di,2 = Op (1) , since N is �nite. Note that

Di,1 = ωiλ
2+δ′
max (Pi,T )E∗

∣∣∣∣∣
(

1√
T

T−h∑
t=1

htet+hη
∗
t+h

)∣∣∣∣∣
2+δ′

= ωiλ
2+δ′
max (Pi,T )T−(2+δ

′)/2E∗

∣∣∣∣∣∣∣
T−h∑

t=1

htet+hηt+h − E∗
(
htet+hη

∗
t+h

)︸ ︷︷ ︸
=0



∣∣∣∣∣∣∣
2+δ′

.
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Then we have

Di,1 ≤ ωiλ
2+δ′
max (Pi,T )T−(2+δ

′)/2E∗

∣∣∣∣∣
T−h∑
t=1

∣∣htet+hη∗t+h − E∗ (htet+hη∗t+h)∣∣2
∣∣∣∣∣
(2+δ′)/2

≤ ωiλ
2+δ′
max (Pi,T )T−(2+δ

′)/2E∗

∣∣∣∣∣∣
(
T−h∑
t=1

∣∣htet+hη∗t+h − E∗ (htet+hη∗t+h)∣∣2+δ′
)2/(2+δ′)

(T − h)1−2/(2+δ
′)

∣∣∣∣∣∣
(2+δ′)/2

= ωiλ
2+δ′
max (Pi,T )T−(2+δ

′)/2 (T − h)(2+δ
′)/2−1

T−h∑
t=1

E∗
∣∣htet+hη∗t+h − E∗ (htet+hη∗t+h)∣∣2+δ′

≤ 22+δ
′
ωiλ

2+δ′
max (Pi,T )T−(2+δ

′)/2 (T − h)(2+δ
′)/2 (T − h)−1

T−h∑
t=1

|htet+h|2+δ
′
E∗
∣∣η∗t+h∣∣2+δ′ ,

where the �rst inequality uses the Burholder's inequality, the second inequality follows by the Holder's

inequality, whereas the last inequality uses the cr-inequality. Because λ2+δ
′

max (Pi,T )= OP (1) , and

given that under our assumptions we have E∗ |ηt+h|2+δ
′
≤ ∆ < ∞ for some δ′ > 0, to prove that

Di,1= Op (1) , it su�ces that E |Di,1,1|= O (1) where Di,1,1 = (T − h)−1
∑T−h

t=1 |htet+h|
2+δ′ . Thus, by

using the Cauchy-schartz inequality, we have

E |Di,1,1| ≤

(
(T − h)−1

T−h∑
t=1

E |ht|2(2+δ
′)

)1/2(
(T − h)−1

T−h∑
t=1

E |et+h|2(2+δ
′)

)1/2

= O (1) .

For Di,2, note that

Di,2 = ωiλ
2+δ′
max (Pi,T )

∣∣∣√T (θ̂ − θ)∣∣∣2+δ′ E∗ [λ2+δ′max

(
1

T

T−h∑
t=1

hth
′
tη
∗
t+h

)]
.

Because
√
T
(
θ̂ − θ

)
converges in distribution, it follows that

∣∣∣√T (θ̂ − θ)∣∣∣2+δ′ = OP (1) . In ad-

dition, λ2+δ
′

max (Pi,T )= OP (1) under our assume conditions. Thus, to prove that Di,2 = OP (1) ,

it su�ces that E∗
[
λ2+δ

′
max

(
1
T

∑T−h
t=1 hth

′
tη
∗
t+h

)]
= OP (1) . To show this, observe that we can write

ht =
(
h1t, h2t, . . . , h(p+q)t

)′
. Then, we have

E∗

[
λ2+δ

′
max

(
1

T

T−h∑
t=1

hth
′
tη
∗
t+h

)]
≤ E∗

∣∣∣∣∣tr
(

1

T

T−h∑
t=1

hth
′
tη
∗
t+h

)∣∣∣∣∣
2+δ′



≤ T−q
p+q∑
i=1

E∗

∣∣∣∣∣∣∣
T−h∑
t=1

h2itη∗t+h − E∗ (h2itη∗t+h)︸ ︷︷ ︸
=0


∣∣∣∣∣∣∣
2+δ′




≤ T−q
p+q∑
i=1

E∗
∣∣∣∣∣

T−h∑
t=1

(
h2itη

∗
t+h − E∗

(
h2itη

∗
t+h

))2∣∣∣∣∣
(2+δ′)/2

 ,
where the third inequality uses the Burholder's inequality. Next by using the Holder's inequality,
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follows by the cr-inequality. We obtain

E∗

[
λ2+δ

′
max

(
1

T

T−h∑
t=1

hth
′
tη
∗
t+h

)]

≤ T−(2+δ
′)
p+q∑
i=1

E∗

∣∣∣∣∣∣
(
T−h∑
t=1

∣∣h2itη∗t+h − E∗ (h2itη∗t+h)∣∣2+δ′
)2/(2+δ′)

(T − h)1−2/(2+δ
′)

∣∣∣∣∣∣
(2+δ′)/2

≤ T−(2+δ
′)
p+q∑
i=1

(T − h)(2+δ
′)/2−1

T−h∑
t=1

E∗
∣∣h2itη∗t+h∣∣2+δ′

≤ T−(2+δ
′)
p+q∑
i=1

(T − h)(2+δ
′)/2−1

T−h∑
t=1

|hit|2(2+δ
′)E∗

∣∣η∗t+h∣∣2+δ′ .
Given that under our assumptions we have E∗

∣∣η∗t+h∣∣2+δ′ ≤ ∆ <∞, it follows that

E

∣∣∣∣∣E∗
[
λ2+δ

′
max

(
1

T

T−h∑
t=1

hth
′
tη
∗
t+h

)]∣∣∣∣∣ ≤ CT−(2+δ
′)/2

p+q∑
i=1

(T − h)−1
T−h∑
t=1

E |hit|2(2+δ
′)

= O
(
T−(2+δ

′)/2
)
,

since (under Assumption 2)
∑p+q

i=1 (T − h)−1
∑T−h

t=1 E |hit|2(2+δ
′) = O (1) . This concludes the proof.
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