
Learning before Trading:

On the Inefficiency of Ignoring Free Information∗

Doron Ravid†

University of Chicago

Anne-Katrin Roesler‡

University of Toronto

Balázs Szentes§

London School of Economics

July 1, 2019

Abstract

This paper analyzes a bilateral trade model in which the buyer’s valuation for the

object is uncertain and she can privately purchase any signal about her valuation.

The seller makes a take-it-or-leave-it offer to the buyer. The cost of a signal is smooth

and increasing in informativeness. We characterize the set of equilibria when learning

is free, and show they are strongly Pareto ranked. Our main result is that when

learning is costly but the cost of information goes to zero, equilibria converge to the

worst free-learning equilibrium.

1 Introduction

Recent developments in information technology have given consumers access to new in-

formation sources that allow them to learn about products prior to trading. For example,

online resources enable buyers to learn about a mechanic’s reputation, a contractor’s abil-

ity, or an over-the-counter (OTC) asset’s value. This information acquisition often takes
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place before the buyers learn the terms of trade. Indeed, to get a price quote, customers

may need to bring their cars to the mechanic, have a contractor over, or waste their first

contact with an OTC dealer.1 Because the buyer’s willingness-to-pay depends on her

information about the product, the seller’s price depends on what he expects the buyer

to learn. Conversely, the seller’s pricing strategy determines what information is worth

learning for the buyer. For example, there may be no point in knowing more about the

value of an asset if the buyer is already sure it is below its price. Therefore, the buyer’s

information acquisition depends on the seller’s expected prices. The goal of this paper is

to study this mutual dependency between the buyer’s learning strategy and the seller’s

pricing policy.

We consider a stylized model in which the seller has a single object for sale and full

bargaining power. Initially, the buyer does not know anything about the value of the

object except its prior distribution. We model the buyer’s learning as flexible information

acquisition; that is, she can purchase any signal about her valuation privately. Then,

the seller, without observing the buyer’s learning strategy and her signal realization, sets

a price. Signals are costly and we assume this cost is a smooth and strongly increasing

function of the signal’s informativeness. Below, we explain these assumptions in detail.

Our aim is to characterize the set of equilibria of this game. We are especially interested

in the limit where the buyer’s cost vanishes. This limit appears to be particularly relevant

in a world where information is becoming cheaper and more accessible to consumers. To

this end, we parameterize the cost by a multiplicative constant and consider the limit

when this parameter converges to zero.

We now describe the buyer’s action space and the cost of information. The demand of

the buyer, which is the probability of trade occurring at a given price, is fully determined

by the distribution of her posterior value estimate. In turn, the seller’s profit from any

given price is pinned down by the buyer’s demand. As a consequence, trade outcomes

are fully determined by the distribution of the buyer’s posterior estimate. The prior

distribution is a mean-preserving spread of any such distribution because each signal

contains less information than the valuation itself. Because the buyer can choose any

signal, we identify her action space with the set of these distributions and define the

cost of information acquisition on this set. To require this function to be smooth, we

appeal to a generalized notion of differentiability, because the domain is a set of CDFs.

1A stylized feature of OTC markets is that prices quoted on a second call can be dramatically higher

than the first one; see Bessembinder and Maxwell (2008) or Zhu (2012).
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In particular, we postulate that the cost function is Fréchet differentiable.

Let us now turn to our main assumption on the cost of information. A signal is more

informative than another if its induced distribution over posterior value estimates is a

mean-preserving spread of that of the other. Thus, a cost function is said to be monotonic

in the signal’s informativeness if mean-preserving spreads cost more. As will be argued,

a cost function is monotonic whenever its Fréchet derivative, which is a function itself,

is convex.2 Our main assumption is somewhat stronger than monotonicity: In addition

to requiring the Fréchet derivative to be convex, we assume this derivative at a given

CDF is strictly convex on the CDF’s support. Imposing this assumption in addition

to monotonicity resembles stipulating that a strictly increasing function has a strictly

positive derivative everywhere.

Monotonicity of the learning cost implies the seller randomizes in every equilibrium

in which the buyer learns. To see why, suppose an equilibrium exists in which the seller

sets a fixed price and the buyer receives an informative signal about her valuation. Then,

this signal must be binary, indicating whether the buyer should trade or not. The reason

is that any other signal can be made less informative, and hence cheaper, while still

leading to the same trading decisions. The seller’s best response to such a binary signal

is to charge the expected valuation of the buyer conditional on one of the two signal

realizations. To get a contradiction, notice the buyer is strictly better off by not learning,

irrespective of which of these prices is set. If the price is the lower signal realization,

the buyer always trades so learning yields no benefit. If the price is the higher signal

realization, the buyer’s surplus from trade is zero, so she could again profitably deviate

by saving the cost of learning and not trading.

Our aforementioned strong monotonicity assumption also has important implications

for the buyer’s equilibrium learning strategy. We show the support of the buyer’s equi-

librium signal is an interval and the buyer’s demand generated by this signal makes the

seller indifferent between setting any price on its support. This indifference condition

implies the buyer’s equilibrium CDF is a truncated Pareto distribution, and hence her

equilibrium demand is unit elastic.

As mentioned above, our main objective is to characterize equilibrium outcomes as

the buyer’s cost vanishes. To this end, we first consider the case in which learning is free.

We show this case admits multiple equilibria, all of which can be Pareto ranked. In the

Pareto-best equilibrium, which maximizes both players’ payoffs across all free-learning

2See Machina (1982) for a similar result.
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Figure 1: An Illustration of the best and worst equilibria in the uniform case.

equilibria, the buyer learns her valuation perfectly. The Pareto-worst equilibrium turns

out to be the unique equilibrium in which the buyer’s posterior estimate is distributed

according to a truncated Pareto distribution.

Figure 1 illustrates the best and worst free-learning equilibria when the prior is uniform

on [0, 1]. In the Pareto-best equilibrium, the buyer learns her valuation perfectly; thus,

the distribution of her value estimate is also uniform, and so is represented by the 45-

degree line. In this case, the seller’s equilibrium price is .5, his profit is .25, and the

buyer’s payoff is .125. The buyer’s CDF in the Pareto-worst equilibrium is depicted as a

gray curve on Figure 1. In this worst equilibrium, the seller’s profit, π, is approximately

.2, the price is p̄ (≈ .715), and the buyer’s payoff is only slightly above .04. Therefore, the

buyer’s payoff is less than one third of her payoff in the perfect-learning equilibrium.

At first, it may appear counter-intuitive that there are equilibria in which the buyer

does not learn perfectly although information is free. In the Pareto-worst equilibrium

described above, the seller’s price, p̄, is defined by the highest intersection of the Pareto

curve and the prior CDF. At this point, the mean-preserving spread constraint binds;

that is, the integral of the Pareto curve and the prior CDF on [0, p̄] coincide. We call such

a price separating. The important property of a separating price is that the buyer never

confuses a value below such a price with a value above it. That is, a value below p̄ never

generates the same signal realization as a value above p̄. Hence, the buyer would not gain

anything by learning more, because this Pareto signal already reveals if her valuation

is above or below p̄, which is the only information she needs to know in order to trade
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ex-post efficiently.

Our main result is that as the buyer’s learning cost vanishes, equilibria converge to a

Pareto-worst free-learning equilibrium. For an explanation, recall that when learning is

costly, the buyer’s equilibrium CDF is a truncated Pareto. The limit of truncated Pareto

distributions is also a truncated Pareto, so the same must hold for the costless limit,

which is a free-learning equilibrium. Hence, as costs shrink, we obtain a free-learning

equilibrium in which the buyer’s demand is unit elastic. All that remains is to recall the

fact mentioned above, namely, that the unique such equilibrium yields the Pareto-worst

free-learning equilibrium outcome.

The main takeaway from our paper is that possessing information might be signifi-

cantly better than having cheap access to it. When information is costly, buyers must have

incentives to acquire it. In equilibrium, prices fail to provide these incentives, so buyers

choose to ignore large amounts of information even when costs are minuscule. In turn,

this ignorance triggers prices that are too high compared to those in a full-information

environment, leading to considerable welfare losses. Mitigating these losses may justify

certain market features such as the existence of professional intermediaries. By making

sure traders are informed, intermediaries can substantially increase social surplus. More

broadly, our results highlight the importance of regulating the provision of product in-

formation even when data are cheap, because cheap data do not necessarily approximate

full information. Special care should be taken when designing the information channels

through which market participants learn. For example, mandatory information sessions

appear to be more desirable than supplying brochures, because being able to know some-

thing is not the same as actually knowing it.

Our paper serves as a cautionary tale on interpreting recent papers characterizing

consumer and producer surplus pairs that can arise as an equilibrium outcome for some

information structure (e.g., Bergemann et al. (2015), Roesler and Szentes (2017)). Of

particular relevance is Roesler and Szentes (2017), who consider a setting similar to ours

in which the buyer’s signal is observed by the seller before he sets a price. Their key result

identifies the signal-equilibrium pair that maximize the buyer’s payoff. The buyer-optimal

signal turns out to be the same Pareto signal as in our worst free-learning equilibrium.3

3Pareto distributions also arise in robust auction design (e.g., Bergemann and Schlag (2008), Carrasco

et al. (2018)). Of particular relevance is Du (2018), who studies an auctioneer’s revenue guarantee from

an exponential mechanism. In the single buyer case, he shows that his mechanism and the signal in our

worst free-learning equilibrium form a saddle point in a zero-sum game between seller and nature.
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At first glance, their result might seem surprising given that the worst free-information

equilibrium minimizes the buyer’s payoff. However, because the seller sets a price only

after observing the buyer’s signal in Roesler and Szentes’s (2017) model, he can set any

profit-maximizing price and, in the buyer-optimal equilibrium, he chooses the lowest such

price. By contrast, in our model, the seller’s price must also justify the buyer’s signal

choice, forcing him to choose a separating point. Thus, our analysis suggests the same

information structure can lead to two drastically different outcomes. Which outcome is

selected depends on the mechanism through which trade occurs.

Our paper also adds to the recent literature on the relationship between free-learning

equilibria and the vanishing-cost limits of equilibria. For example, Yang (2015) stud-

ies a 2-by-2 coordination game in which players can learn about their stochastic benefits

from coordination. When the learning cost is proportional to entropy reduction, infinitely

many equilibria can be attained in the limit. Morris and Yang (2016) consider a related

regime-switching game and show a unique vanishing-cost limit exists if the learning cost

admits a “continuous choice” property, that is, if only signals whose distribution varies

continuously with the state can be optimal.4 This literature primarily focuses on static

flexible-learning models in which all players have access to the same information. In

these models, free information always yields a perfect-learning outcome. Therefore, the

vanishing-cost limit can be viewed as an equilibrium-selection device from a symmetric-

information game. By contrast, learning is asymmetric in our model because the seller

cannot acquire information about the buyer’s valuation. Consequently, as we explained

above, perfect-learning corresponds to an asymmetric-information game with a substan-

tially smaller equilibrium set than our free-learning game. And, indeed, our vanishing-cost

limit selects a free-learning outcome that is simply not an equilibrium under full informa-

tion.

Costly consumer learning is extensively studied in the literature on rational inattention

initiated by Sims (1998, 2003, 2006). In these models, information cost is proportional

to the resulting expected reduction in entropy. For example, Matějka (2015) studies

a dynamic pricing model with a consumer who is rationally inattentive to prices. The

author finds that rational inattention leads to rigid pricing, because such pricing structures

are easier for the consumer to assess. Ravid (2018) studies a dynamic, repeated-offer

4Denti (2018) shows that allowing players to learn about others’ information yields a unique vanishing

cost limit in Yang’s (2015) model, whereas Hoshino (2018) argues the limits selected by Denti’s (2018)

model depend on the fine details of the cost function.
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bargaining game in which the buyer is rationally inattentive and can learn about both

her valuation and the seller’s offers. He finds the buyer benefits from her inattention,

and that such benefits remain large even when offers are frequent and costs vanish. In

contrast to this literature, we treat the cost of information in an abstract way and do not

assume such a particular form. Still, one can show our results go through even when the

buyer’s information costs are given by expected entropy reduction.

Several papers examine buyers’ incentives to acquire costly information about their

valuations before participating in auctions. The buyers’ learning strategies depend on the

selling mechanism announced by the seller. Persico (2000) shows that if the buyers’ signals

are affiliated, they acquire more information in a first-price auction than in a second-price

one. Compte and Jehiel (2007) show dynamic auctions tend to generate higher revenue

than simultaneous ones. Shi (2012) also analyzes models in which it is costly for the

buyers to learn about their valuations, and identifies the revenue-maximizing auction in

private-value environments. In all of these setups, the seller is able to commit to a selling

mechanism before the buyers decide how much information to acquire. By contrast, we

consider environments where the monopolist cannot commit and best responds to the

buyer’s signal structure.5

Condorelli and Szentes (2018) also consider a bilateral trade model. In contrast to

our setup, the distribution of the buyer’s valuation is not given exogenously. Instead,

the buyer chooses her value distribution and perfectly observes its realization. The seller

observes the buyer’s distribution but not her valuation and sets a price. The authors

show that, as in our model, the equilibrium distribution generates a unit-elastic demand.

2 The Model

A seller, S, has an object to sell to a single buyer, B. B’s valuation, v, takes values

in [0, 1] according to the CDF F0 whose expected value is v̄ =
∫
v dF0(v) > 0. We

assume F0 is regular, meaning it has a strictly positive density, f0, on [0, 1] and that

v − (1 − F0(v))/f0(v) is strictly increasing in v. B does not observe v but can choose

to observe any signal, s, at a cost that depends on the signal’s informativeness. Below,

we describe the set of signals available to the buyer and the associated cost in detail.

5Another strand of the literature analyzes the seller’s incentives to reveal information about the buy-

ers’ valuations prior to participating in an auction; see, for example, Ganuza (2004), Bergemann and

Pesendorfer (2007), and Ganuza and Penalva (2010).
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Then S, without observing B’s information-acquisition strategy and signal, makes a take-

it-or-leave-it price offer, p ∈ [0, 1], which B accepts if and only if her expected valuation

conditional on her signal weakly exceeds p.6 Both players are risk-neutral expected-payoff

maximizers.

Signal structures and B’s action space. Note that both B’s trading decision and her

expected payoff from trading depend only on her posterior expectation, E[v|s]. Assuming

that acquiring more information7 is more costly, restricting attention to signal structures

for which B’s posterior expectation is the signal itself – that is, E[v|s] = s, is without

loss of generality. As a consequence, both B and S only care about the signal’s marginal

distribution. Thus, we identify each signal with the CDF of its marginal distribution. We

let F denote the space of all CDFs over [0, 1], which we endow with the L1-norm, denoted

by ‖·‖. 8 For any subset A ⊆ [0, 1], we take 1A to be the indicator function that is equal

to 1 on A, and zero otherwise. Therefore, 1[x,1] ∈ F is the CDF corresponding to a unit

atom at x ∈ [0, 1]. Given a CDF, F ∈ F , we let F (x−) be its left limit at x.9

Comparing the informativeness of different signals turns out to be useful. We say

that s is more informative than s′ if observing s is equivalent to observing s′ and an

additional signal t, that is, s =E[v|s′, t]. Of course, one can assume t is just the difference

between the two signals, so s = s′ + t. Furthermore, by the Law of Iterated Expectation,

E[t|s′] = 0.10 In other words, s is a mean-preserving spread of s′. Conversely, for any

signal s whose distribution is a mean-preserving spread of F ′, a less informative signal s′

exists whose distribution is F ′.11 Hence, if F, F ′ ∈ F , we say that F is more informative

than F ′ (denoted by F � F ′) if and only if F is a mean-preserving spread of F ′; that is,12

∫ x

0
(F − F ′) ds ≥ 0 for all x with equality for x = 1. (1)

The CDF F is said to be strictly more informative than F ′ (denoted by F � F ′) if

both F � F ′ and F ′ 6= F .13

6Assuming B trades if indifferent has no effect on our results but makes the analysis simpler.
7Using Blackwell’s (1953) information ranking.
8That is, the norm that maps any Borel measurable φ : [0, 1]→ R to ‖φ‖ =

∫ 1

0
|φ(x)|dx. Restricted to

the set of CDFs over [0, 1], this norm metrizes weak* convergence; see, for example, Machina (1982).
9That is, F (x−) = supF ((−∞, x)).

10More precisely, E
[
t|s′
]

= E
[
s− s′|s′

]
= E

[
E
[
v|s′, t

]
|s′
]
− s′ = E

[
v|s′

]
− s′ = 0.

11See Gentzkow and Kamenica (2016) and references therein.
12See Rothschild and Stiglitz (1970) for the statement and Leshno et al. (1997) for the corrected proof.

Blackwell and Girshick (1979) proves the result for discrete distributions.
13Notice that � is reflexive and anti-symmetric, meaning F � F ′ and F ′ � F if and only if F = F ′.
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We allow B to choose any signal to learn about v, and we identify B’s action space

with the set of those CDFs that correspond to a signal about her valuation. Of course,

observing the valuation perfectly is more informative than any signal. Thus, B can choose

any CDF F that is less informative than the prior F0, that is, any F ∈ F such that

F0 � F . We denote this set by A, and refer to CDFs in A as signals. Letting IF (x) denote∫ x
0 (F0 − F ) ds, (1) implies F ∈ A if and only if IF (x) ≥ 0 for all x and IF (1) = 0.

The cost of information acquisition. Information acquisition is costly. In general,

different information structures generating the same distribution of posterior expectation

might come at different costs. However, because B’s expected payoff from trading depends

only on the distribution of this posterior expectation, F , she would always use the least

expensive signal that leads to F . In fact, B may even randomize to get F . Thus, we can

evaluate the cost of F by the expected cost of the cheapest randomization that generates

it, resulting in a convex cost function,

C : A → R+.

We also require the function C to be sufficiently smooth. More precisely, we assume C

is Fréchet differentiable; that is, it is continuous, and for each F ∈ A, a Lipschitz

function, cF : [0, 1]→ R, exists such that for every F ′ ∈ A,

C(F ′)− C(F ) =

∫
cF d(F ′ − F ) + o

(∥∥F ′ − F∥∥) , (2)

where o is a function that equals zero at zero and limx↘0 [o(x)/x] = 0. We refer to cF as

C’s derivative at F .14

The assumption that acquiring more information is more costly is natural. We say

that C is monotone if C(F ) ≥ C(F ′) whenever F is strictly more informative than F ′.

Next, we show that C is monotone if and only if its Fréchet derivative is convex.15

Claim 1 Let C be convex and Fréchet differentiable. Then, C is monotone if and only

if cF is convex for each F ∈ A.

Proof. See appendix.

For the intuition behind the claim and for better understanding the concept of Fréchet

differentiablility, let us restrict attention to signals whose support lies in a finite set, say,

14Formally, cF (x) =
∫ x

0
φF ds for some φF ∈ L∞[0, 1], and so cF is unique Lebesgue-a.e.

15See Machina (1982) for a related result.
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{s1, . . . , sN}. Then, each F ∈ F can be represented by the vector in the n-dimenional

simplex (α1, . . . , αN ) ∈ ∆n for which F =
∑N

n=1 αn1[sn,1]. In this case, the function C is

a mapping from ∆n to R, and the Fréchet derivative at F at sn, cF (sn), is C’s partial

derivative with respect to the probability of sn, that is, ∂C (F ) /∂αn = cF (sn). Thus, the

marginal cost of a small shift from F to F ′ is the sum of the marginal cost at each signal

realization times the change in each realization’s probability, that is,
∫
cF d(F ′ − F ). Of

course, if F ′ � F , this quantity is positive whenever cF is convex.

Our main assumption requires cF to be not only convex but also strictly convex on

the support of F .

Assumption 1 For each F ∈ A, cF is convex and strictly convex on co(supp F ).

Strategies and payoffs. A mixed strategy for S is a random price, represented by a

CDF over prices, H ∈ F , whereas a strategy for B is a signal, F ∈ A.16 If B’s signal is

F , S’s expected payoff from the random price H is given by

Π(H,F ) =

∫
p(1− F (p−)) dH(p).

We denote S’s maximal profit by πF := maxp∈[0,1] Π(p, F ) and the set of profit-maximising

prices by P (F ) = arg maxp∈[0,1] Π(p, F )17 In Appendix B, we establish continuity of S’s

maximal profit and upper hemicontinuity of the profit-maximizing prices, P (·).18

If S’s randomization over prices is H, B’s expected payoff from the signal F is

Uκ(H,F ) =

∫ ∫ s

0
(s− p) dH(p) dF (s)− κC(F ),

where κ ∈ R+ is a constant parameterizing B’s cost of information.

Equilibrium Definition and Existence. An equilibrium is a pair, (H,F ) ∈ F ×A, such

that

1. H maximizes Π(·, F ) over F ;

2. F maximizes Uκ(H, ·) over A.

16We can assume B uses a pure strategy because C is convex, S’s objective is linear, and A is convex.
17We slightly abuse notation and let Π(p, F ) denote Π(1[p,1], F ).
18Notice S’s profit is only upper semicontinuous, and so said properties do not follow from Berge’s

Maximum Theorem.
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Because B’s best response and S’s (mixed) best response are upper hemicontinuous, non-

empty, convex and compact valued, an equilibrium exists by Kakutani’s Fixed-Point

Theorem.19

Truncated Pareto Distributions. As mentioned in the introduction, the set of truncated

Pareto distributions plays an important role in our analysis. To formally define this set,

for each π ∈ (0, 1] and t ∈ [π, 1], let

Gπ,t(s) = 1[π,t)

(
1− π

s

)
+ 1[t,1]. (3)

We refer to the set {Gπ,t} as the set of truncated Pareto distributions and an element of

{Gπ,t} ∩ A as a Pareto signal.

2.1 Examples of Cost of Learning

This section provides three examples of cost functions that satisfy our assumptions and

characterizes their Fréchet derivatives.

Example 1. (Constant Marginal Cost) Fix some strictly convex function c : [0, 1]→ R+.

Define

C(F ) =

∫
c dF.

Then, C’s Fréchet derivative equals c for all F .

Example 2. (Increasing Marginal Cost) Fix some strictly convex c : [0, 1]→ R+ and

a strictly increasing, convex, and differentiable ψ : R+ → R+. Then, the function

C(F ) = ψ

(∫
c dF

)
19Convexity (compactness) of the best response follows from concavity and linearity (continuity and

upper semicontinuity) of B’s and S’s objectives, respectively. Upper hemicontinuity of B’s best response

follows from Berge’s Maximum Theorem. To see S’s mixed best response, F 7→ arg maxH∈F Π(H,F ),

viewed as a correspondence, is upper hemicontinuous, consider a convergent sequence of signals, Fn → F∞,

and suppose Hn ∈ arg maxH∈F Π(H,Fn) converges to H∞. Because F is compact, it is enough to show

H∞ is an S best response to F∞, that is, supp H∞ ⊆ P (F∞). Now, on the one hand, supp(·) is lower

hemicontinuous, and so p∞ ∈ supp H∞ only if a sequence pn ∈ supp Hn exists that attains p∞ as its limit.

On the other hand, P (·) is upper hemicontinuous (see Appendix B), and so the limit of any convergent

sequence pn ∈ supp Hn ⊆ P (Fn) is in P (F∞). Therefore, p∞ ∈ supp H∞, only if p∞ ∈ P (F∞), that is,

supp H∞ ⊆ P (F∞).
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satisfies our assumptions. Indeed, by the chain rule, the above cost function is Fréchet

differentiable, with the derivative being given by

cF (·) = ψ′
(∫

c dF

)
c(·),

which is convex for all F , and strictly convex for any F 6= 1[v̄,1].

Example 3. (Quadratic Costs) Let c : [0, 1] × [0, 1] → R+ be some strictly convex,

symmetric function; that is, c(s1, s2) = c(s2, s1) for all s1, s2 ∈ [0, 1]. Assume further that

c is positive semidefinite, that is,
∫ ∫

c d(F − F ′)d(F − F ′) ≥ 0 for all F, F ′ ∈ F . Then,

the cost function20

C(F ) =
1

2

∫ ∫
c(s1, s2) dF (s1)dF (s2)

is convex and Fréchet differentiable, with the derivative being given by the strictly convex

function,

cF (·) =

∫
c(·, s2) dF (s2).

3 Costless Learning

In this section, we analyze the set of equilibria when learning is free, that is, when

κ = 0. We first provide geometric characterizations of the best responses of B and S,

respectively. We then use these characterizations to identify the set of payoff profiles

that arise in equilibrium. We also show the free-learning equilibrium set can be strongly

Pareto ranked, with the best equilibrium being the one given by perfect learning, that

is, F = F0. Later, we also show that the worst equilibrium outcome is attainable with a

Pareto signal.

3.1 The Buyer’s Best Responses

If S sets price p and B learns her valuation perfectly, she makes an ex-post efficient trading

decision. To make such decisions, B’s signal must reveal whether the true valuation is

above or below p. In what follows, we characterize the set of such signal distributions.

Note that if B chooses F and the price is p, her expected payoff from trade is∫ 1

p
(s− p) dF (s) = (1− p)−

∫ 1

p
F (s) ds,

20Example 3 is essentially the functional form for quadratic preferences as introduced by Machina (1982).

12



where the equality follows from integration by parts. Of course, when information is free,

perfect learning is a best response to any pricing strategy of S. In fact, using the previous

equation, the increase in B’s payoff from switching from F to perfect learning can be

expressed as∫ 1

p
(F − F0)(s) ds =

∫ 1

0
(F − F0)(s) ds−

∫ p

0
(F − F0)(s) ds = IF (p) ≥ 0, (4)

where the inequality follows from (1). Thus, the slackness in the signal’s information

constraint at p, IF (p), is the benefit of obtaining all remaining information. Whenever

this benefit is zero, B cannot gain from learning more. Because B can only lose from

learning less, F is an optimal for B if and only if IF (p) = 0. Intuitively, IF (p) = 0 means

p separates F ’s realizations: Either B’s true valuation and the signal generated by F are

smaller or both of them are larger than p. In what follows, we refer to such a price as

F -separating and we denote the collection of such prices by S (F ), that is,

S(F ) = {p ∈ [0, 1] : IF (p) = 0}.

In summary, if S sets price p, the signal F is B’s best response if and only if p ∈ S (F ).

The next lemma shows the argument of this paragraph can be extended to the case where

S randomizes over prices. We show that by choosing F , B achieves the same payoff as

with perfect learning if and only if S only charges F -separating prices.

Lemma 1 The signal F is a best response against H if and only if supp H ⊆ S(F ).

Proof. If S uses H and B chooses F , the difference between B’s payoff generated by F0

and that of F can be written as

U0 (H,F0)− U0 (H,F ) =

∫ [∫ 1

p
(s− p) dF0 (s)−

∫ 1

p
(s− p) dF (s)

]
dH (p)

=

∫ [∫ 1

p
F (s) ds−

∫ 1

p
F0 (s) ds

]
dH (p) =

∫
IF (p) dH (p) ,

where the first equality follows from (4) and the third one from
∫ 1
p (F0 − F ) ds = IF (p).

Because F ∈ A and IF (·) is continuous, we conclude that F generates the same payoff as

perfect learning if and only if IF (p) = 0 for all p ∈ supp H, that is, supp H ⊆ S(F ).

Next, we show the graphs of F and F0 must intersect at any F -separating price.

Intuitively, p is F separating if the signal reveals whether the valuation is above or below

p. Hence, the probability that B observes a signal realization below p must be the same
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as the probability that her valuation is below p; that is, the CDFs F and F0 must coincide

at p.

Lemma 2 If F ∈ A and p ∈ S(F ), then F is continuous at p and

F (p) = F0(p). (5)

Proof. Suppose p ∈ S(F ). Then, by the definition of S (F ), IF (p) = 0. Recall that

IF (x) ≥ 0 for all x ∈ [0, 1], so

p ∈ arg min
x∈[0,1]

IF (x). (6)

Because IF (x) =
∫ x

0 (F0 − F ) ds, it can be differentiated from both sides at p. Therefore,

(6) implies

0 ≥ I ′F−(p) = F0(p−)− F (p−),

0 ≤ I ′F+(p) = F0(p)− F (p).

From these two inequalities, it follows that F0(p−) ≤ F (p−) ≤ F (p) ≤ F0(p). Because F0

is regular, it does not have an atom at p, so F0(p−) = F (p). Hence, all the inequalities

in the previous inequality chain are equalities. The lemma follows.

3.2 The Seller’s Best Responses

We now characterize the set of profit-maximizing prices. To this end, we first describe S’s

iso-profit curves on the price-cumulative probability space. Note that if the price is p and

the probability that B’s valuation is strictly less than p is y, then S’s profit is p (1− y).

Hence, the iso-profit curve in this space corresponding to a given profit, say, π (> 0), is

defined by

{(p, y) : y ∈ [0, 1] , p (1− y) = π} .

Of course, if p < π, the profit cannot exceed p and no y ∈ [0, 1] exists that generates π.

Otherwise, for each p ∈ [π, 1], the cumulative probability, y, which guarantees profit π

is 1 − π/p. Observe that 1 − π/p is the CDF corresponding to the Pareto distribution

parameterized by π. Becaue p ≤ 1, we conclude that the iso-profit curve of the seller

corresponding to profit π is essentially identical to the truncated Pareto distribution,

Gπ,1.
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Figure 2: The seller’s best response against the uniform distribution.

These iso-profit curves can be used to analyze S’s best response against B’s signal

distribution as illustrated in Figure 2 for the case of a uniform F . Note that lower iso-

profit curves correspond to larger profits. In addition, the set of feasible outcomes are

{(p, F (p−)) : p ∈ [0, 1]}. Therefore, S’s profit is defined by the largest π, such that the

curve Gπ,1 (s) is weakly below that of F (s−). In Figure 2, three iso-profit curves are

depicted as the gray dashed contours, and the middle one, G1/4,1, is the largest iso-profit

curve below F , so the profit of S is 1/4. Furthermore, the set of optimal prices, P (F ),

are those values at which F is tangent to the largest iso-profit curve below it. Because

iso-profit curves are strictly increasing, the CDF F must also be strictly increasing at any

point of tangency, and hence any such points must lie in the support of F . In Figure 2,

only a single point of tangency at p = 0.5 exists. The following lemma summarizes these

observations.

Lemma 3 Fix any F ∈ A. Then,

(i) for all s ∈ [0, 1], F (s−) ≥ GπF ,1 (s−); and

(ii) P (F ) = {p ≥ πF : F (p−) = GπF ,1(p−)} ⊆ supp F.

Part (i) states that B’s CDF is first-order stochastically dominated by the Pareto distri-

bution parameterized by S’s profit, πF . Part (ii) says the set of profit-maximizing prices

are those signals at which B’s CDF essentially coincides with this Pareto distribution.
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Proof of Lemma 3. To prove part (i), note S’s profit from setting a certain price cannot

exceed πF ; that is, for all s ∈ [0, 1], s (1− F (s−)) ≤ πF . Rearranging this inequality

yields

GπF ,1 (s−) = 1− πF
s
≤ F (s−) ,

which proves part (i).

To see part (ii), note that s ∈ P (F ) if and only if the inequality in the previous

displayed chain is an equality. Hence, P (F ) = {p ≥ πF : F (p−) = GπF (p−)}. It remains

to show that P (F ) ⊆ supp F . Suppose, by contradiction, that a p exists such that

p ∈ P (F ) \supp F . Then, p′ > p exists such that F (p′−) = F (p−). Therefore,

Π (p, F ) = p (1− F (p−)) < p′ (1− F (p−)) = p′
(
1− F (p′−)

)
= Π

(
p′, F

)
,

where the inequality follows from p′ > p and the second equality follows from F (p′−) =

F (p−). This inequality chain implies S is strictly better off with setting price p′ than

price p, a contradiction to p ∈ P (F ).

3.3 Free-Learning Equilibrium Characterization

We now turn to characterizing the set of free-learning equilibrium payoffs. We begin by

showing S never randomizes in equilibrium. More specifically, we prove that if (H,F ) is a

free-learning equilibrium, H specifies an atom of size one at a price that would generate

profit πF even if B learns perfectly instead of getting signal F . To state this result

precisely, for each π, let Xπ be the set of prices that yield profit π under F0, that is,

Xπ := {p : Π (p, F0) = π}. We first explain that, in any free-learning equilibrium, (H,F ),

supp H ⊆ XπF .

To see this inclusion, note that any equilibrium price must be profit maximizing as well as

F separating (see Lemma 1), and hence supp H ⊆ P (F ) ∩ S(F ). Therefore, it is enough

to show that

P (F ) ∩ S(F ) ⊆ XπF . (7)

To explain this inclusion, we consider a price p that is both profit maximizing under F

and F separating, and explain that p generates profit πF under perfect learning, that is,

p ∈ XπF . Because p ∈ S (F ), B’s demand is the same under F and under perfect learning,

see Lemma 2. Consequently, p generates the same profit irrespective of whether B’s signal

is F or F0. Furthermore, this profit is πF because p ∈ P (F ), and hence p ∈ XπF .
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Figure 3: An illustration of Lemma 4. The blue line corresponds to the prior, F0, the red

curve is the the signal, F , and the dashed curve is the πF iso-profit curve, GπF . Although

the signal is such that both prices in XπF = {p
πF
, p̄πF } are profit maximizing, only p̄F

can be separating.

The next lemma states that S’s equilibrium price must the largest element of XπF .

Before we state this result, note that because F0 is regular, the function Π(·, F0) is strictly

concave, so Xπ contains at most two such prices for every π. Because Π(·, F0) is contin-

uous, it attains any value between 0 and πF0 .21 Therefore, for each π ∈ [0, πF0 ], Xπ is

non-empty and contains at most two prices. Let p̄π be the higher of those prices, that is,

p̄π = maxXπ. The following lemma says p̄πF is the unique price that can be both profit

maximizing and F separating.

Lemma 4 Let (H,F ) be a free-learning equilibrium. Then, supp H = {p̄πF }.

Proof. See the Appendix.

For an explanation, recall that Xπ has at most two elements. If XπF is a singleton, the

statement of the lemma immediately follows from the observation that

supp H ⊆ P (F ) ∩ S(F ) and (7). Suppose now that XπF is binary, that is, XπF =

{p
πF
, p̄πF } and p

πF
< p̄πF . Figure 3 illustrates this case and depicts the prior, F0, the

signal, F , and the πF -iso-profit curve, GπF ,1. By Lemma 2 and the definition of XπF ,

21This follows from the Intermediate Value Theorem and that charging zero generates zero profit.
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these three curves intersect at p
πF

and p̄πF . We now argue that∫ p̄πF

p
πF

F0 (s) ds <

∫ p̄πF

p
πF

GπF ,1 (s) ds ≤
∫ p̄πF

p
πF

F (s) ds.

The first inequality follows from the observation that the strict concavity of Π(·, F0)

implies Π(·, F0) is strictly larger than πF on
(
p
πF
, p̄πF

)
, so F0 < GπF ,1 on this interval.

The second inequality follows from the fact that S’s maximal profit is πF if B’s signal

is F , therefore, by part (i) of Lemma 3, F ≥ GπF ,1. An immediate consequence of this

inequality chain is that IF (p
πF

)− IF (p̄πF ) =
∫ p̄πF
p
πF

(F − F0) (s) ds > 0. Because F ∈ A,

IF (p̄πF ) ≥ 0, so it must be that IF (p
πF

) > 0, meaning p
πF

is not F separating.

We now turn to the main result of this section, which characterizes the set of payoff

profiles that can arise in equilibrium. Before stating this result, we introduce an additional

piece of notation. Let π denote S’s minmax profit, that is, the smallest possible profit

that can be generated by some learning strategy when S responds optimally. Formally,22

π = min
F∈A

max
p∈[0,1]

Π (p, F ) = min
F∈A

πF .

Theorem 1 shows S’s minimal and maximal equilibrium profits are π and πF0 , respectively,

and that S can attain any profit in between. If S’s equilibrium profit is π, B’s equilibrium

payoff is given by her expected utility under full information when S’s price is p̄π.

Theorem 1 A free-learning equilibrium (H,F ) exists such that πF = π and U0(H,F ) = u

if and only if π ∈ [π, πF0 ] and u =
∫ 1
pπ

(s− pπ) dF0 (s).

Proof. See the Appendix.

The “only if” part of this theorem implies that in a free-learning equilibrium, S can

never attain a profit above his full-information profit. This result is a straightforward

consequence of Lemma 4. Recall that this lemma states that if B’s signal is F , the

equilibrium price is the largest price that generates profit πF under perfect learning, pπF .

But if learning is perfect, S can achieve πF0 by setting the optimal price instead of pπF ,

showing that πF ≤ πF0 . The theorem also states that if B’s signal is F , her equilibrium

payoff is the same as if she learns perfectly and S charges a price of p̄πF . This conclusion

follows from the facts that S sets price pπF in every equilibrium where his profit is πF

22The minmax is well defined because A is compact, Π(·, F ) is upper semicontinuous, and F 7→ πF is

continuous (see Appendix B for a proof of the last fact).
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(see Lemma 4) and that perfect learning is always a best response when information is

free.

The “if” part of the theorem’s proof is constructive. Specifically, we find an equilib-

rium for each π ∈ (π, πF0) such that S’s profit is π. Existence of an equilibrium with profit

π follows from the equilibrium payoff set being closed.23 Figure 4 illustrates our construc-

tion, which obtains an equilibrium by applying two modifications to the π-iso profit curve,

Gπ,1. The first modification creates a CDF with separating and profit-maximizing price

p that gives S a profit of π. To get this CDF, we replace the realizations in the lowest q

quantiles of Gπ,1 with realizations from the same quantiles of F0. The resulting CDF is

equal to F0 at any x, such that F0(x) ≤ q, to Gπ,1 when Gπ,1(x) ≥ q, and to q otherwise.

This CDF, however, fails to be a signal, due to having too large of a mean. To make the

CDF into a signal, we reduce the mean using the second modification: truncating the

distribution at the top at some value t. The result is a signal corresponding to the red

curve, Gqπ,t, in Figure 4. Noting the truncation point t is larger than p means p still yields

S a profit of π, and remains separating and profit maximizing. Thus, having S offer p and

B use Gqπ,t gives a free-learning equilibrium.

Using Theorem 1, we can deduce that free-learning equilibria are strongly Pareto

ranked; that is, B prefers one free-learning equilibrium to another if and only if S does as

well.

Corollary 1 All free-learning equilibria are strongly Pareto ranked. That is, for any two

free-learning equilibria, (H,F ) and (H ′, F ′),

Π(H,F ) ≥ Π(H ′, F ′) if and only if U0(H,F ) ≥ U0(H ′, F ′).

Proof. We prove the corollary by showing that p̄π is strictly decreasing in π over the

interval [π, πF0 ]. To see why this monotonicity is sufficient, recall that B’s free-learning

equilibrium payoff is equal to
∫ 1
p̄π

(s − p̄π) dF0, where π is S’s profit. Hence, B’s utility

decreases in S’s price. If S’s price decreases with her profit, we find that higher profits

23To see why the equilibrium payoff set is closed, note first that upper hemicontinuity of the players’

best-response correspondences implies closedness of the set of equilibrium strategy profiles. Because both

players’ strategies live in a compact set, the set of equilibrium strategy profiles is closed only if it is

compact. As such, every convergent sequence of equilibrium payoffs is associated with a convergent

sequence of equilibria. Because both players’ maximal value is continuous in the other player’s strategy,

the payoffs generated by the limit equilibrium equal the limit of the equilibrium payoff sequence. Hence,

the limit of every converging sequence of equilibrium payoffs is itself an equilibrium payoff; that is, the

equilibrium payoff set is closed.
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Figure 4: A constructed free-learning equilibrium, (1[p,1], F ).

correspond to lower prices and therefore higher B utility. We now show that p̄π decreases

over the range of feasible free-learning equilibrium profits. For this purpose, take any

π < π′ in [π, πF0 ]. We prove p̄π′ < p̄π by showing Xπ contains a price strictly larger than

p̄π′ . To find such a price, we make two observations. First, because π < π′, we have that

F0(p̄π′) = Gπ′,1(p̄π′−) = 1− p̄π′

π′
< 1− p̄π′

π
= Gπ,1(p̄π′−).

Second, because F0 is regular, Gπ,1(1−) = 1 − 1/π < 1 = F0(1−). Combining the two

observations, we have that Gπ,1(p̄π′) − F0(p̄π′) > 0 > Gπ,1(1 − ε) − F0(1 − ε) for any

small positive ε. Because the difference Gπ,1 − F0 is continuous on [0, 1), we can apply

the Intermediate Value Theorem to find some p ∈ (p̄π′ , 1) for which Gπ,1(p)− F0(p) = 0.

Therefore, p ∈ Xπ, meaning p̄π ≥ p. We have thus concluded that p̄π ≥ p > p̄π′ , meaning

the higher profit level corresponds to a lower price, thereby proving the corollary.

We have thus shown that when learning is free, our model admits a continuum of

equilibria, all of which can be Pareto ranked. In the next section, we discuss the shape

of equilibria when learning is costly, and show that as costs vanish, the equilibrium must

converge to a Pareto-worst free-learning equilibrium.

4 Costly Learning

This section accomplishes two goals. First, we provide an equilibrium characterization in

our model of costly learning. In particular, B’s equilibrium signal is shown to belong to
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the family of Pareto signals. Second, we prove the main result of this paper: As the cost

of learning vanishes, equilibria converge to the worst free-learning equilibrium.

4.1 Equilibrium Characterization

The next result provides a partial characterization of the equilibrium when B’s learning

cost satisfies Assumption 1.

Proposition 1 Suppose (H,F ) is an equilibrium in the κ > 0 game. Then,

(i) supp H = supp F = co(supp F ), and

(ii) F is a Pareto signal.

Proof. See the Appendix.

Part (i) of this proposition states that the supports of B’s signal and S’s randomization

coincide. Furthermore, this support is an interval. From these two observations, it is

straightforward to conclude part (ii). The reason is that S must be indifferent on supp H,

so each price in supp H must generate the same profit. Therefore, part (i) implies B’s

equilibrium signal, F , must coincide with an iso-profit curve over its support. Because

the iso-profit curve is a Pareto distribution truncated at 1, F must be a Pareto signal.

Next, we explain how to establish part (i). The key step is to show S charges every

price between any two possible signal realizations, that is,

co(supp F ) ⊆ supp H. (8)

If this inclusion does not hold, co(supp F ) includes a non-empty interval (x, y) that never

contains S’s price, that is, supp H ∩ (x, y) = Ø. In fact, we show that if (x, y) is maximal

among such intervals, x, y must both lie in supp F . So, to prove (8), it is enough to show

supp H ∩ (x, y) 6= Ø if x, y ∈ supp F . Suppose first that F places atoms at both x and

y. Then, B can profitably deviate by bunching together all the signals x and y; that is,

instead of observing these signals, she only learns the signal is in {x, y}. By Assumption

1, this bunching strictly reduces B’s learning cost. Moreover, because S never sets a price

in (x, y), such a bunching leaves B’s trade surplus unchanged. To understand why, note

that conditional on the original signal being x, the buyer trades if and only if the price

is weakly less than x, irrespective of whether the signals are bunched together. The only

difference in trading decisions is that if the original signal is y, B trades if the price is y
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but rejects this price after the bunching. Because the buyer breaks even in both cases,

this difference does not change her payoff. We conclude that when F has atoms at both x

and y, it cannot be a best response against H if supp H ∩ (x, y) = Ø. If either x or y have

zero mass according to F, one can construct a profitable deviation in a similar fashion by

pooling together small neighborhoods of x and y. Finally, notice that

co(supp F ) ⊆ supp H ⊆ supp F ⊆ co(supp F ),

where the first inclusion is just (8), the second follows from the observation that S never

sets a price that is not a possible signal realization (see part (ii) of Lemma 3). This chain

of inclusion implies part (i) of the theorem.

4.2 Vanishing Learning Cost

We are now ready to state and prove the main result of the paper: As the cost of learning

vanishes, equilibria converge to a free-learning equilibrium that minimizes both players’

payoffs. In this equilibrium, S achieves only his minmax profit, π = minF∈A πF , and B

uses the Pareto signal associated with this profit, Gπ,t̄.
24

Theorem 2 For κ > 0, let (Hκ, Fκ) be any equilibrium of the κ-game. Then,

lim
κ→0

(Hκ, Fκ) = (1[p̄π ,1], Gπ,t̄).

Recall that p̄π is the largest price that generates profit π when B learns perfectly.

Therefore, this theorem says that in the limit as learning becomes free, B uses a Pareto

signal that generates the S’s minmax profit, and S charges the higher of the two prices

yielding this profit when B collects full information. By Corollary 1, this limit is the worst

free-learning equilibrium for both players.

The proof of this theorem is based on connecting our analysis of costly learning with

our observations regarding free-learning equilibria. When costs are positive, B uses a

Pareto signal (see Proposition 1). Because the set of Pareto signals is closed, she must

also be using a Pareto signal in the limit, say, Gπ,t. In turn, when learning is free, S must

set a Gπ,t-separating price in the support of Gπ,t (see Lemma 1 and part (ii) of Lemma

3). The key step in the proof, which we explain in detail in the next paragraph, is to show

a Pareto signal that has a non-empty set of separating prices in its support is associated

24Roesler and Szentes (2017) establish the existence and uniqueness of such a Pareto signal.
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Figure 5: The minmax Pareto signal, Gπ,t̄, and another Pareto signal, Gπ,t, with π > π.

with the minmax profit, π. To conclude the theorem, we note that if S’s profit is π, he

must charge p̄π by Lemma 4.

Let us return to the key step of the proof and explain that the only Pareto signal

that has a separating price in its support is Gπ,t̄. We first observe that the support of

each Pareto signal, Gπ,t ∈ A, with π < π, is contained in the support of Gπ,t̄ , that is,

[π, t] ⊂ [π, t̄]. The reason is that the mean of a Pareto signal, Gπ,t, is strictly increasing

in both π and t. Because the mean of each Pareto signal is v
(
=
∫
v dF0(v)

)
and π < π,

it follows that t < t. We now argue that the information constraint of Gπ,t̄ is point-wise

tighter than that of Gπ,t over Gπ,t’s support. In other words, we demonstrate that for all

x ∈ supp Gπ,t,

0 < IGπ,t (x)− IGπ,t̄ (x) =

∫ x

0

[
Gπ,t̄ (s)−Gπ,t (s)

]
ds. (9)

The right-hand side is just the area between the CDFs Gπ,t and Gπ,t̄ on [0, x]. Figure 5

illustrates these CDFs and the area between them. Note that this area is zero for all

x ∈ [0, π] and strictly increasing over [π, t]. Therefore, the area must be strictly positive

for all x ∈ [π, t] = supp Gπ,t; that is, (9) holds. Because Gπ,t̄ ∈ A, IGπ,t̄(x) ≥ 0, and so

IGπ,t(x) > 0 must hold for for all x ∈ supp Gπ,t. Hence, Gπ,t has no separating prices in

its support.

We now turn to proving Theorem 2.

Proof of Theorem 2. Let {κn}n≥0 be a strictly positive sequence that converges to zero,

and take {(Hn, Fn)}n≥0 to be a corresponding sequence of equilibria. Because F andA are
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both compact, {(Hn, Fn)}n≥0 can be seen as a union of convergent subsequences. Without

loss, let one of these subsequences be the sequence itself, and let (H∞, F∞) ∈ F × A be

its limit. To prove the theorem, it is sufficient to show that (H∞, F∞) = (1[p̄π ,1], Gπ,t̄).

To this end, we first note that because B’s objective is a continuous function of

(κ,H, F ), B’s best-response correspondence is upper hemicontinuous in (κ,H). There-

fore, F∞ ∈ arg maxF∈A U0(H∞, F ), meaning supp H∞ ⊆ S(F∞) by Lemma 1. That H∞

is optimal for S against F∞ follows from upper hemicontinuity of S’s mixed-best-response

correspondence, F 7→ arg maxHF Π(H,F ).25 Thus, the limit (H∞, F∞) is a free-learning

equilibrium. Because the Pareto signal set is closed and F∞ is the limit of Pareto signals

(Proposition 1), we have that F∞ is itself a Pareto signal; that is, F∞ = Gπ,t for some

π and t. Below, we argue that π = π, and so t = t̄. Clearly, max Π(·, Gπ,t̄) = π. There-

fore, the free-learning equilibrium H∞, F∞) = (H∞, Gπ,t̄) gives S a profit of π. That

H∞ = 1[p̄π ,1] then follows from Lemma 4.

All that remains is to show that π = π. Suppose for a contradiction that π > π.

Because (H∞, Gπ,t) is a free-learning equilibrium, the support of H∞ contains only prices

that are both profit maximizing and separating, meaning P (Gπ,t) ∩ S(Gπ,t) 6= Ø. Take

any p ∈ P (Gπ,t)∩S(Gπ,t). On the one hand, p is separating, and so IGπ,t(p) = 0. On the

other hand, p ∈ P (Gπ,t) ⊆ supp Gπ,t = [π, t] (by Lemma 3 Part (ii)) and so

IGπ,t(p) =

∫ p

0
(F0 −Gπ,t) ds =

∫ π

0
F0 ds+

∫ p

π
(F0 − (1− π/s)) ds

>

∫ π

0
(F0 −Gπ,t̄) ds+

∫ p

π
(F0 − (1− π/s)) ds = IGπ,t̄(p) ≥ 0,

where the inequality follows from Gπ,t̄(s) > 0 for all s ∈ (π, π), and the last equality

follows from Gπ,t̄(s) = 1 − π/s for all s ∈ [π, t̄] ⊃ [π, t].26 Thus, we have shown that

IGπ,t(p) = 0 < IGπ,t(p) – a contradiction. It follows that π = π, completing the proof.

25See footnote 19.
26Recall that a Pareto signal’s truncation point is decreasing with its associated profit.
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5 Discussion

To conclude, we discuss some of our assumptions and how they can be relaxed.

Production costs. We assumed S’s production cost is zero. We now discuss how our

results generalize to the case in which S has to incur a positive production cost upon

trade. Thus, suppose S’s payoff when trading is p− c, where c ∈ (0, 1). For c ∈ (0, v̄), our

analysis goes through with the c-shifted truncated Pareto signal,

Ĝcπ,t(s) = 1[π+c,t)

(
1− π

s− c

)
+ 1[t,1] t ≥ π + c, π ≥ 0,

replacing the truncated Pareto, Gπ,t. Other than this replacement, all results hold as

stated.

For c ≥ v̄, our analysis implies trade breaks down: In the costless limit, B collects

no information and no trade occurs. To see why, note that even when c > 0, Proposi-

tion 1’s part (i) continues to hold for any costly learning equilibrium in which B acquires

information. In other words, in any costly learning equilibrium in which B learns, the

support of S’s price and of B’s signal must equal the same interval. As such, if B’s signal is

non-degenerate, its CDF is a c-shifted truncated Pareto. But when c ≥ v̄, no informative

signal can have a c-shifted truncated Pareto distribution.27 Hence, B acquires no informa-

tion when learning is costly, and so the same must hold in the costless limit. However, if

p < 1 and learning is free, full information strictly benefits B over no information. Thus,

the vanishing-cost limit is autarky with no learning.

Robustness and purification: random production costs. Our main result appears to

rely on the observation that if information is free, B learns whether her valuation is above

or below the equilibrium price but chooses to ignore large amounts of information. If many

equilibrium prices were possible, B may need to learn more and compare her valuation

with any of these prices. Therefore, one may wonder whether our results extend to

environments where the price is stochastic. Another concern is that when learning is

costly, S randomizes in equilibrium and it is not obvious that S’s strategy can be purified

without affecting our main conclusion. To address these issues, we describe what happens

if S has a random production cost with full support in [0, 1] that is independent of B’s

valuation. S privately observes the cost realization, c, before setting a price. Then, his

27Indeed, suppose F = Ĝcπ,t for some signal F ∈ A. Then, supp F = supp Ĝcπ,t ⊆ [c, 1] ⊆ [v̄, 1].

Therefore,
∫
s dF ≥ v̄, with equality only if supp F = {v̄}, that is, if F is uninformative.
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utility from trade at price p is p − c, where c is the production-cost realization. In this

case, free-learning equilibria are still strongly Pareto ranked and are indexed by the price

S charges when c = 0. This price is offered for all values of c for which S would set a lower

price under perfect learning, and B’s signal distribution above this price agrees with the

CDF of her prior. For higher values of c, S sets the same price as he would under perfect

learning. Both players turn out to strictly prefer equilibria in which the price is lower

conditional on c = 0. Because this price must be separating in equilibrium, its maximum

across all B signals is p̄π, whereas its minimum is attained when B learns perfectly. As

such, perfect learning is still a Pareto-best equilibrium. In the Pareto-worst equilibrium,

the CDF of B’s signal coincides with the truncated Pareto, Gπ,t̄, for all values below p̄π.

One can show this free-learning equilibrium is the only one in which B uses this CDF,

and that the same CDF is attained at the vanishing-cost limit. Hence, even when the

production cost is stochastic, our main result is valid and the costless limit still selects

the Pareto-worst free-learning equilibrium.

Random prices as general mechanisms. We argue that it is without loss of generality

for S to set a price instead of a more general mechanism. Consider a more general model,

where S and B simultaneously choose a mechanism and a signal, respectively. Then, B

observes her signal’s realization and decides whether to participate in S’s mechanism. A

mechanism constitutes a set of messages for B, and each message is associated with a

transfer and a probability of trade. Note that B’s interim expected payoff from any of the

messages is fully determined by her posterior value estimate. Hence, by the Revelation

Principle, restricting attention to individually rational and incentive-compatible mecha-

nisms in which B truthfully reports her posterior value estimate is without loss. Then,

standard arguments imply that any mechanism is equivalent to setting a random price;

see, for example, Börgers (2015), Proposition 2.5.

Non-regular prior. Most of our results generalize to the case in which B’s prior-value

distribution is not regular.28 When learning is free, equilibrium requires S’s price to be

separating, and the full-information outcome remains profit maximizing regardless of the

prior. Similarly, the regularity of the prior plays no role in showing that B uses a Pareto

signal when learning is costly, and the same holds in the costless limit. Because the

28Our results hold without change when the buyer’s prior is supported on a subinterval, [x, x̄] ⊆ [0, 1],

over which f0 is strictly positive and v − (1 − F0(v))/f0(v) is strictly increasing. Whenever x > 0, it is

possible, however, that π = πF0 , meaning that there is a unique free-learning equilibrium. Such uniqueness

arises if and only if πF0 = x.
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costless limit is a free-learning equilibrium, the Pareto signal in the limiting case still has

a separating price in its support, so this signal is still profit minimizing. Therefore, even

without regularity, the costless limit still minimizes S’s profits across all signal structures

and generates the lowest profit across all free-learning equilibria.

However, a non-regular prior does affect the conclusion that the costless limit mini-

mizes B’s payoff for two reasons. First, a non-regular prior can result in Pareto-incomparable

free-learning equilibria, and so the profit-minimizing equilibrium may not minimize B’s

payoff. Second, when the prior is non-regular, the profit-minimizing Pareto signal may

have more than one separating price in its support, so many free-learning equilibria may

exist in which B uses the profi-minimizing Pareto signal. In fact, one can show that

under Assumption 1, each such equilibrium is a limit of some equilibrium sequence with

vanishing costs. As a consequence, without regularity, B may obtain different outcomes

in the vanishing-cost limit depending on the fine details of the prior and the converging

equilibrium sequence.
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Appendix

A Proof of Claim 1

We begin by proving the following useful lemma, which shows for every F , w, z ∈
int (co(supp F )), and α ∈ (0, 1), two distributions, F ′, F ′′ exist such that F � F ′ � F ′′

and

F ′ − F ′′ = γ
(
α1[w,1] + (1− α)1[z,1] − 1[αw+(1−α)z,1]

)
for some γ > 0.

Lemma 5 Fix some F ∈ F \ {1[x,1] : x ∈ [0, 1]}, let [x, x′] = co(supp F ), and take

w̄ =
∫
s dF . Take any w, y, z ∈ (x, x′), and α ∈ (0, 1) such that y = αw + (1− α)z. For

λ, β ∈ [0, 1), define xλ = w̄−λy
1−λ , and

Fλ,β := (1− λ)1[xλ,1] + λ(1− β)1[y,1] + λβ
[
α1[w,1] + (1− α)1[z,1]

]
.

Then, β, λ ∈ (0, 1) exists such that F � Fλ,β � Fλ,0.

Proof. Suppose without loss that z > w. Note that Fλ,0 � 1[w̄,1] for all λ > 0 because

λy + (1 − λ)xλ = w̄. We now show that Fλ,β � Fλ,0 for every β ≥ 0. For this purpose,

notice that

Fλ,β − Fλ,0 = λβ[α1[w,1] + (1− α)1[z,1]]− λβ1[y,1].

Therefore, for all s̄ ∈ [0, 1],∫ s̄

0
(Fλ,β − Fλ,0) ds = λβ

∫ s̄

0
(α1[w,1] + (1− α)1[z,1] − 1[y,1]) ds ≥ 0,

in view of
(
α1[w,1] + (1− α)1[z,1]

)
� 1[y,1]. Because s̄ was arbitrary, we have Fλ,β � Fλ,0.

Let us introduce some helpful definitions, which rely on xλ being continuous in λ

and x0 = w̄. Fixing some ε > 0 for which (w̄ − ε, w̄ + ε) ⊆ (x, x′), choose a λ̄ to be

such that {xλ}λ∈[0,λ̄] ⊆ (w̄ − ε, w̄ + ε) ⊆ (x, x′). Let x∗ = max
(
{z} ∪ {xλ}λ∈[0,λ̄]

)
and

x∗ = min
(
{w} ∪ {xλ}λ∈[0,λ̄]

)
, and define the function

ϕ : [x∗, x
∗]× [0, λ̄]2 → R

(s̄, λ, β) 7→
∫ s̄

0
(F − Fλ,β) ds.
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Taking (·)+ := max{·, 0}, we can write

ϕ(s̄, λ, β) =

∫ s̄

0
F ds− (1− λ)(s̄− xλ)+ − λ(1− β)(s̄− y)+

− λβα(s̄− w)+ − λβ(1− α)(s̄− z)+,

and so ϕ is continuous in the product topology. Therefore,

ϕ∗ : [0, λ̄]2 → R

(λ, β) 7→ min
s∈[x∗,x∗]

ϕ(s, λ, β)

is also continuous by Berge’s Maximum Theorem.

We now show ϕ(s̄, 0, 0) > 0 for all s̄ ∈ [x∗, x
∗]. To do so, notice x0 = w̄, and

therefore F0,0 = 1[x0,1] = 1[w̄,1]. Because w̄ > x∗ > x (by choice of F ), we also have

F (s) > 0 = 1[w̄,1](s) for all s ∈ [x, w̄). As such, if s̄ ∈ [x∗, w̄] then
∫ s̄

0 (F − 1[w̄,1])(s) ds =∫ s̄
x F (s) ds > 0. Similarly, for all s ∈ [w̄, x′), F (s) < 1 = 1[w̄,1](s). As such, if s̄ ∈ [w̄, x∗],∫ 1
s̄ (1 − F (s)) ds > 0 =

∫ 1
s̄ (1 − 1[w̄,1](s)) ds, and so

∫ 1
s̄ (F − 1[w̄,1])(s) ds < 0. Since∫ 1

0 (F − 1[w̄,1])(s) ds = 0, we obtain
∫ s̄

0 (F − 1[w̄,1])(s) ds > 0 for all s̄ ∈ [w̄, x∗] as well.

We are now in a position to complete the proof; that is, we show F � Fλ,β for all

small λ, β > 0. By the previous paragraph, ϕ(s̄, 0, 0) > 0 for all s̄ ∈ [x∗, x
∗]. As such,

ϕ∗(0, 0) = mins∈[x∗,x∗] ϕ(s, 0, 0) > 0, and so by continuity of ϕ∗, one must then have

ϕ∗(λ, β) > 0 for all λ, β > 0 small enough. Fixing any such λ and β, we now show that∫ s̄
0 (F − Fλ,β) ds ≥ 0 for all s̄ by considering three cases. First, if s̄ ∈ [x∗, x

∗],∫ s̄

0
(F − Fλ,β) ds ≥ ϕ∗(λ, β) > 0.

Second, if s̄ ∈ [x, x∗), F (x) ≥ 0 = Fλ,β(x), and so
∫ s̄

0 (F −Fλ,β) ds =
∫ s̄

0 F ds ≥ 0. Third,

if s̄ ∈ (x∗, 1],∫ s̄

0
(F − Fλ,β) ds =

∫ x∗

0
(F − Fλ,β) ds+

∫ s̄

x∗
(F − 1) ds

≥
∫ x∗

0
(F − Fλ,β) ds+

∫ 1

x∗
(F − 1) ds =

∫ 1

0
(F − Fλ,β) ds = 0,

in view of supp Fλ,β ⊆ [x∗, x
∗] and Fλ,β � 1[w̄,1]. We have therefore shown that for all

sufficiently small λ and β,
∫ s̄

0 (F − Fλ,β) ds ≥ 0 for all s̄ ∈ [0, 1], with equality holding at

s̄ = 1 (because Fλ,β � 1[w̄,1]). Therefore, F � Fλ,β, thereby completing the proof.

We are now ready to prove Claim 1.
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Proof of Claim 1. Suppose first that cF is convex for all F . Fix some F ′ � F . Because

C is convex, we have that

C(F ′)− C(F ) ≥
∫
cF d(F ′ − F ) ≥ 0,

where the last inequality follows from cF being convex. Hence, C is monotone.

Suppose now that C is monotone. Fix any w, y, z ∈ co(supp F0) such that

y = αw + (1 − α)z for some α ∈ (0, 1). Because cF is only unique Lebesgue almost

everywhere (see footnote 14), we may as well assume w, y, z ∈ int (co(supp F0)). Our

task is to show cF (y) ≤ αcF (w) + (1− α)cF (z).

By Lemma 5, an F ′ and F ′′ exist such that F0 � F ′ � F ′′ and

F ′ − F ′′ =
(
α1[w,1] + (1− α)1[z,1] − 1[αw+(1−α)z,1]

)
,

for some γ > 0. Because � respects convex combinations,

F + ε(F ′ − F ) � F + ε(F ′′ − F )

must hold for all ε ∈ [0, 1]. Appealing to monotonicity of C then yields that, for all

ε ∈ (0, 1),

0 ≤ C(F + ε(F ′ − F ))− C(F + ε(F ′′ − F ))

=
[
C(F + ε(F ′ − F ))− C(F )

]
−
[
C(F + ε(F ′′ − F ))− C(F )

]
.

Dividing by ε > 0, taking ε↘ 0 and substituting for F ′ and F ′′ then yields

0 ≤ 1

ε

[
C(F + ε(F ′ − F ))− C(F )

]
− 1

ε

[
C(F + ε(F ′′ − F ))− C(F )

]
→
∫
cF d(F ′ − F )−

∫
cF d(F ′′ − F ) = αcF (w) + (1− α)cF (z)− cF (y),

thereby concluding the proof.

B Upper hemicontinuity of S’s best response

In this section, we prove the following lemma about S’s best-response correspondence and

maximal value.

Lemma 6 S’s maximal profit, F 7→ πF , is continuous, and P (·) is upper hemicontinuous.
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Proof. Let {Fn}n≥0 be some sequence attaining F∞ as its limit. We show

limn→∞ πFn = πF∞ . Because Π is upper semicontinuous, F 7→ πF is also upper semicon-

tinuous.29 As such, it suffices to show that lim infn→∞ πFn ≥ π∞. To do so, take any

p ∈ P (F∞). Then, for all ε > 0,

πFn ≥ Π(p− ε, Fn) ≥ (p− ε)(1− Fn(p− ε)).

Thus,

lim inf
n

πFn ≥ lim inf
n

(p− ε)(1− Fn(p− ε)) ≥ (p− ε)(1− F∞(p− ε)) ≥ p(1− F∞(p−))− ε,

where the second inequality follows from the Portmanteau theorem. Because ε above is

arbitrary, the result follows.

To see that P (·) is upper hemicontinuous, take any convergent sequence pn ∈ P (Fn)

attaining p∞ as its limit. Because Π is upper semicontinuous and F 7→ πF is continuous,

πF∞ = limπFn = lim sup
n

Π(pn, Fn) ≤ Π(p∞, F∞) ≤ πF∞ .

Thus, Π(p∞, F∞) = πF∞ ; that is, p∞ ∈ P (F∞).

C Proof of Lemma 4: Free-learning equilibrium prices

If (H,F ) is an equilibrium, F is a best response to H, and hence, by Lemma 1,

supp H ⊆ S (F ). Furthermore, because H is a best response to F , each price in the

support of H must be profit maximizing, that is, supp H ⊆ P (F ). Therefore, it is

enough to prove P (F )∩S(F ) = {p̄πF }. We have already shown that P (F )∩S(F ) ⊆ XπF ;

see equation (7). Thus, it remains to be shown that if p ∈ XπF but p < p̄πF then

p /∈ S (F ).

To this end, note that for all s ∈ (p, p̄πF ), it must be that

GπF ,1(s) > F0(s). (10)

The reason is that because F0 is regular, the profit function Π (·, F0) is strictly concave,

and hence any price between p and p̄πF generates a profit strictly above πF (= Π (p, F ) =

Π (p, F0)). Thus, F0 is strictly below the πF -iso-profit curve at these prices; that is, (10)

holds. Now, observe that

IF (p) = IF (p̄πF )−
∫ p̄πF

p
(F0 − F ) ds ≥ IF (p̄πF )−

∫ p̄πF

p
(F0 −GπF ,1) ds > IF (p̄πF ) ≥ 0,

29See Aliprantis and Border (2006), Lemma 17.30, for example.
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where the first inequality follows from part (i) of Lemma 3, the strict inequality follows

from (10), and the last inequality is implied by F ∈ A. Thus, we have shown that

IF (p) > 0, and hence p /∈ S (F ).

D Proof of Theorem 1: Free-learning equilibrium payoffs

We begin by noting that if (H,F ) is a free-learning equilibrium and F0 is regular, B’s

expected utility is
∫ 1
p̄πF

(v−p̄πF ) dF0(v), which is a consequence of two facts. First, Lemma

4 implies H puts a unit mass on p̄πF ; that is, H = 1[p̄πF ,1]. Second, full information is

always optimal for B when learning is costless, meaning her expected utility in equilibrium

must be the same as her expected utility under full information; that is, U0(1[p̄πF ,1], F ) =

U0(1[p̄πF ,1], F0) =
∫ 1
p̄πF

(s− p̄πF ) dF0(s).

Given the above, it remains to be shown that a free-learning equilibrium, (H,F ),

exists such that π = πF if and only if π ∈ [π, πF0 ]. To do so, we first establish that

π ≤ Π(H,F ) ≤ πF0 whenever (H,F ) is a free-learning equilibrium. Because π ≤ Π(H,F )

by definition of π, it remains to be shown that Π(H,F ) ≤ πF0 . To do so, notice that

because suppH ⊆ S(F ), we have by Lemma 2 that F (p−) ≥ F0(p−) for every p ∈ suppH.

Because H maximizes S’s profit, S’s profit must be the same from all prices in supp H.

We therefore have that for any p ∈ supp H,

Π(H,F ) = Π(p, F ) = p(1− F (p−)) ≤ p(1− F0(p−)) = Π(p, F0) ≤ πF0 ,

as required.

We now show that for every π ∈ [π, πF0 ], a free-learning equilibrium, (H,F ), exists

such that Π(H,F ) = π. Because the equilibrium payoff set is closed,30 it is sufficient to

show that every profit π ∈ (π, πF0) can be generated by some equilibrium.31 Fix such a

π, and define for q ∈ [0, 1] and t ∈ [π, 1] the following CDF:

Gqπ,t : [0, 1]→ [0, 1]

x 7→ max{Gπ,t(x),min{q, F0(x)}}.

Our proof allows for non-regular priors. As such, we let [x, x̄] = co(supp F0). Below we

prove the following lemma:

30See footnote 23.
31Alternatively, notice the vanishing-cost limit of Theorem 2 is a free-learning equilibrium that gives S

a profit of π, whereas having B collect full information and S best respond is an equilibrium yielding S a

profit of πF0 .
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Lemma 7 A q∗ exists such that I
Gq
∗
π,1
≥ 0, with equality holding for some x̂ ∈ [π, x̄] such

that Gq
∗

π,1(x̂) = Gπ,1(x̂) ≥ q∗.

Before providing the lemma’s proof, let us show how to use the lemma to obtain an

equilibrium. Take q∗ and x̂ to be as in the lemma. We explain how to find a t ≥ x̂ such

that Gq
∗

π,t is a signal. Let y = max{x ∈ [x, x̄] : I
Gq
∗
π,1

(x) = 0}. Because I
Gq
∗
π,1

(x̂) = 0

and x̂ ∈ [π, x̄] ⊆ [x, x̄], y ≥ x̂. As such, x ∈ [y, 1] implies Gπ,1(x) ≥ q∗, and therefore

Gq
∗

π,1(x) = Gπ,1(x). Thus,

I
Gq
∗
π,y

(1) =

∫ x̄

y
(F0(s)− 1) ds ≤ 0 ≤ I

Gq
∗
π,1

(1).

Because x 7→ I
Gq
∗
π,x

(1) is continuous, we have that a t ∈ [y, 1] exists such that I
Gq
∗
π,t

(1) = 0.

It remains to be verified that Gq
∗

π,t is a signal. For x ≤ t, Gq
∗

π,t(x−) = Gq
∗

π,1(x−), and so

I
Gq
∗
π,t

(x) = I
Gq
∗
π,1

(x) ≥ 0. For x > t,

I
Gq
∗
π,t

(x) = I
Gq
∗
π,t

(t) +

∫ x

t
(F0 − 1)ds ≥ I

Gq
∗
π,t

(t) +

∫ 1

t
(F0 − 1)ds = I

Gq
∗
π,t

(1) = 0.

Thus, Gq
∗

π,t is a signal. We now argue that (1[x̂,1], G
q∗

π,t) is a free-learning equilibrium

yielding S a profit of π. To do so, notice first that Gq
∗

π,t(x−) ≥ Gπ,1(x−) for all x, with

equality holding for x = x̂ ≥ π. Therefore, x̂ ∈ P (Gq
∗

π,t), and

π
Gq
∗
π,t

= Π(x̂, Gq
∗

π,t) = Π(x̂, Gπ,t) = π.

Moreover, I
Gq
∗
π,t

(x̂) = I
Gq
∗
π,1

(x̂) = 0 by choice of x̂ and in view of t ≥ y ≥ x̂. Hence,

x̂ ∈ S(I
Gq
∗
π,t

(x̂)), and so Gq
∗

π,t is optimal for B given 1[x̂,1].

Hence, all that remains is to prove Lemma 7, which we do now.

D.1 Proof of Lemma 7

We first show that mean-preserving spreads increase the convex hull of a CDF’s support.

Lemma 8 Suppose F � G. Then, co (supp F ) ⊇ co (supp G).

Proof. Let [x, y] = co (supp F ) and [w, z] = co (supp G), and suppose w < x for a

contradiction (the proof for z > y is analogous). Take ε > 0 to be such that w + ε < x.

Because w must be in G’s support, G(w + ε) > 0. By contrast, F (w + ε) = 0 as w + ε is
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below F ’s support. Because these observations are true for every ε ∈ (0, x− w), we have∫ x
0 F ds = 0 <

∫ x
0 G ds, contradicting that F � G.

Because the support of every signal is contained in [x, x̄] = co(supp F0) (by Lemma 8),

and a truncated Pareto signal is associated with π (which follows from Theorem 2),

π > π ≥ x. We now prove a useful lemma about Gπ,1.

Lemma 9 IGπ,1(x) ≥ 0 for all x, with a strict inequality whenever x > x.

Proof. Note that π > π implies Gπ,1(s) ≤ Gπ,1(s) for all s, with a strict inequality for

s > π ≥ x. As such, for every x > x,

IGπ,1(x) =

∫ x

0
(F0 −Gπ,1) ds ≥

∫ x

0
(F0 −Gπ,1) ds ≥

∫ x

0
(F0 −Gπ,t̄) ds = IGπ,t̄(x) ≥ 0,

where the first inequality is strict whenever x ≥ π. Because IGπ,1(·) is continuous, we also

have that IGπ,1(x) ≥ 0.

Let

A = {x ∈ [π, x̄] : Gπ,1(x) ≥ F0(x−)}.

Note that A is closed in view of upper semicontinuity of Gπ,1(·) and lower semicontinuity

of x 7→ F0(x−). We now show A is non-empty. In particular, we show A ⊇ P (F0),

which is non-empty due to upper semicontinuity of Π(·, F0). By Lemma 3 and π < πF0 ,

P (F0) ⊆ [πF0 , x̄] ⊆ [π, x̄]. Moreover, for any x ∈ P (F0), π < πF0 implies

F0(x−) = GπF0
,1(x−) < Gπ,1(x−) ≤ Gπ,1(x).

That P (F0) ⊆ A follows.

In view of the above, x∗ := minA is well defined. We now prove a q∗ exists such that

the minimal value of I
Gq
∗
π,1

over A is zero.

Lemma 10 A q∗ ≤ F0(x∗−) exists such that min I
Gq
∗
π,1

(A) = 0.

Proof. The proof is based on the Intermediate Value Theorem. To use this theorem, we

note the mapping

(q, x) 7→ IGqπ,t(x) =

∫ x

0
(F0 −Gqπ,t) ds

is continuous, being the difference between two continuous functions of (q, x). As such,

q 7→ min IGqπ,1(A) is continuous in view of the maximum theorem. Moreover,

min IG0
π,1

(A) = min IGπ,1(A) ≥ 0. In light of the Intermediate Value Theorem, it is
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sufficient to find a q > 0 for which min IG0
π,1

(A) ≤ 0. To do so, note that because

Gπ,1(s) < F0(s−) for all s < x∗, we have that

I
G
F0(x∗−)
π,1

(x∗) =

∫ x∗

0
(F0 −max{Gπ,1(s),min{F0(x∗−), F0(s)}}) ds

=

∫ x∗

0
(F0 −max{Gπ,1(s), F0(s)}) ds = 0.

Because x∗ ∈ A, min I
G
F0(x∗−)
π,1

(A) ≤ I
G
F0(x∗−)
π,1

(x∗) = 0. Thus, we have shown that

min I
G
F0(x∗−)
π,1

(A) ≤ 0 = min IG0
π,1

(A), as required. The proof is now complete.

The next lemma assures us that Gqπ,1 is not a signal only if it has too high of a mean.

Lemma 11 For all x ∈ [0, 1], I
Gq
∗
π,1

(x) ≥ 0.

Proof. Divide [0, 1] into three subintervals, [0, π), [π, x∗], and (x∗, 1], showing the desired

inequality holds for each at a time. We first show that inf I
Gq
∗
π,1

([0, π)) ≥ 0. To see this,

recall that π ≥ x, meaning x < π only if Gπ,1(x) = 0. As such, whenever x < π,

Gq
∗

π,1(x) = max{0,min{q∗, F0(x)}} = min{q∗, F0(x)} ≤ F0(x).

Thus, I
Gq
∗
π,1

(x) ≥
∫ x

0 (F0−F0) ds = 0 for all x ∈ [0, π). We now show that min I
Gq
∗
π,1

([π, x∗]) ≥ 0.

For this, let x ∈ [π, x∗], and recall that Gπ,1(s−) < F0(s−) ≤ F0(s) must hold for all s < x

by choice of x∗. As a consequence,

I
Gq
∗
π,1

(x) =

∫ x

0
F0(s)−max{Gπ,1(s),min{q∗, F0(s)}} ds

≥
∫ x

0
F0(s)−max{Gπ,1(s), F0(s)} ds

=

∫ x

0
F0(s)− F0(s) ds = 0.

We thus have that min I
Gq
∗
π,1

([0, x∗]) ≥ 0. To complete the proof that min I
Gq
∗
π,1

([0, 1]) ≥ 0,

suppose for a contradiction that x ∈ (x∗, 1] exists such that I
Gq
∗
π,1

(x) < 0. Take

x0 ∈ arg min
x∈[0,1]

I
Gq
∗
π,1

(x) = arg min
x∈(x∗,1]

I
Gq
∗
π,1

(x).

Because I
Gq
∗
π,1

(x) is right differentiable, we have that

0 ≤ I ′
Gq
∗
π,1−

(x0) = F0(x0−)−Gπ,1(x0−),

in view of q∗ ≤ F0(x∗) ≤ Gπ,1(x∗). Therefore, F0(x0) ≥ F (x0); that is, x0 ∈ A, in

contradiction to min I
Gq
∗
π,1

(A) = 0. Thus, I
Gq
∗
π,1

(x) ≥ 0 for all x.
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To conclude the proof of Lemma 7, notice that x ∈ A only if Gπ,1(x) ≥ F0(x−) ≥
F0(x∗−) ≥ q∗. Taking x1 ∈ arg minx∈A IGq

∗
π,1

(x), we therefore have

Gq
∗

π,1(x1) = max{Gπ,1(x1),min{q∗, F0(x1)}} = max{Gπ,1(x1), q∗} = Gπ,1(x1).

Thus, x1 is in A ⊆ [π, x̄], has I
Gq
∗
π,1

(x) = 0, and satisfies Gπ,1q
∗(x) = Gπ,1(x) ≥ q∗; that

is, our proof is complete.

E Proof of Proposition 1: Costly learning equilibria

We show supp H = supp F = co(supp F ), meaning supp F is a convex set over which S

is indifferent; that is, F is a truncated Pareto. Because supp H ⊆ supp F ⊆ co(supp F )

by Lemma 3, our task is to show co(supp F ) ⊆ supp H.

Letting [w, z] := co(supp F ), we wish to show that [w, z] ⊆ supp H. Suppose otherwise

for a contradiction; that is, [w, z] ∩ supp H 6= [w, z]. We show x < y in supp F exist

such that (x, y) ∩ supp H = Ø. To do so, we note that supp H ∩ [w, z] is a closed set,

meaning [w, z]\supp H is open (in R), and so must contain a non-empty open subinterval

of [w, z]. Let (x, y) be a maximal such subinterval with respect to set containment; that

is, (x, y) is such that (x′, y′) ∩ supp H 6= Ø for all (x′, y′) ⊇ (x, y).32 Because supp H

is closed, if x 6= w then x ∈ supp H; otherwise, (x − ε, x + ε) ⊆ [w, z] \ supp H for all

small ε > 0, meaning (x, y) ⊆ (x− ε, y) ⊆ [w, z] \ supp H, a contradiction to maximality

of (x, y). An analogous argument gives y 6= z only if y ∈ supp H. Hence, we have shown

x, y ∈ {w, z} ∪ supp H. Because supp H ⊆ supp F (Lemma 3) and {w, z} ⊆ supp F , we

thus have that x, y ∈ supp F .

We now construct a family of deviations indexed by ε > 0, F ∗ε , and obtain a con-

tradiction by showing these deviations must be strictly profitable for B when ε > 0 is

sufficiently small.

Fix a small ε > 0, and note the following are all well defined due to x, y ∈ supp F :

F1,ε = F (·|s ∈ [x− ε, x+ ε]),

F2,ε = F (·|s ∈ [y − ε, y + ε]),

β1,ε = F (x+ ε)− F ((x− ε)−) > 0,

β2,ε = F (y + ε)− F ((y − ε)−) > 0.

32One can find the subinterval (x, y) by fixing some (x′, y′) ⊂ [w, z] \ supp H, and taking the union of

all (x′′, y′′) ⊆ [w, z] \ supp H that contain (x′, y′).
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Moreover, take

β0,ε = 1− β1,ε − β2,ε,

F0,ε =

F (·|s /∈ [x− ε, y + ε]) if β0,ε > 0,

arbitrary F ′ ∈ A otherwise.

Clearly, F =
∑2

i=0 βi,εFi,ε. Moreover, because x, y ∈ supp F , both β1,ε and β2,ε are

strictly positive for all ε > 0. Define

sε =
1

2

∫
s d (F1,ε + F2,ε) ,

ηε = min{β1,ε, β2,ε} > 0,

F ∗ε = β0,εF0,ε + ηεδsε + (β1,ε − 0.5ηε)F1,ε + (β2,ε − 0.5ηε)F2,ε.

In words, F ∗ε takes 0.5ηε mass from the ε-ball around x and 0.5ηε mass from the ε-ball

around y and pools them to create an ηε > 0 mass on sε. Because 0.5(F1,ε + F2,ε) � δsε ,

F ∗ε is less informative than F , which, in turn, is less informative than F0. By transitivity

of the information ordering, F0 is more informative than F ∗ε ; that is, F ∗ε ∈ A.

Let TH(s) =
∫ s

0 (s− p) dH(p) denote B’s expected trade surplus conditional on signal

realization s. Below, we prove

lim
ε↘0

∫
TH
ηε

d(F − F ∗ε ) = 0, (11)

lim
ε↘0

(
C(F ∗ε )− C(F )

ηε

)
< 0, (12)

and so obtain the following contradiction to F maximizing Uκ(H,F ),

0 ≤ lim
ε↘0

Uκ(H,F )− Uκ(H,F ∗ε )

ηε
= lim

ε↘0

[∫
TH
ηε

d(F − F ∗ε ) + κ
C(F ∗ε )− C(F )

ηε

]
< 0, (13)

hence completing the proof.

We now explain why (11) and (12) both hold. Because (x, y) ∩ supp H = Ø, B’s

trading surplus from receiving a signal s ∈ [x, y] is given by

TH(s) =

∫ s

0
(s− p) dH(p) =

∫ x

0
(s− p) dH(p) = H(x)s−

∫ x

0
p dH(p). (14)

As such, TH is affine over [x, y], and so (11) obtains as follows:∫
TH
ηε

d(F − F ∗ε ) = 0.5

(∫
TH dF1,ε +

∫
TH dF2,ε

)
− TH(sε)

→ 0.5TH(x) + 0.5TH(y)− TH(0.5x+ 0.5y) = 0,
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where convergence follows from continuity of TH(·), sε → 0.5(x + y), F1,ε → 1[x,1], and

F2,ε → 1[y,1]. We now use the latter three convergences to obtain (12). To do so, notice

these convergences imply

‖F ∗ε − F‖
ηε

=
∥∥1[sε,1] − 0.5 (F1,ε + F2,ε)

∥∥→ ∥∥1[0.5(x+y),1] − 0.5
(
1[x,1] + 1[y,1]

)∥∥ =: M.

As such, Fréchet differentiability of C and strict convexity of cF over co(supp F ) ⊇ [x, y]

yield

1

ηε
[C(F ∗ε )− C(F )] =

1

ηε

[∫
cF d(F ∗ε − F ) + o (‖F ∗ε − F‖)

]
=

∫
cF d

[
1[sε,1] − 0.5 (F1,ε + F2,ε)

]
+
‖F ∗ε − F‖

ηε

[
o (‖F ∗ε − F‖)
‖F ∗ε − F‖

]
→ cF (0.5x+ 0.5y)− (0.5cF (x) + 0.5cF (y)) +M · 0 < 0.

Thus, we have (11) and (12), which together yield the contradiction (13), which completes

the proof.
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